Rigid And Nonrigid Objects In Canonical And Noncanonical Views: Hemisphere-Specific Effects On Object Identification

We compared the performance in a picture-name matching task of 10 patients suffering from left cerebral hemisphere (LH) damage and 10 from right hemisphere (RH) damage. The tasks showed detailed figures of nonrigid objects (animals) and rigid objects (artefacts), and each object was shown in two separate views: a noncanonical view (an unusual perspective for rigid objects or a contorted pose for the nonrigid ones) and a canonical view (a typical perspective and pose). Patients with LH damage were specifically impaired in identifying noncanonical (contorted) poses of nonrigid objects (animals). In a second picture-name matching experiment, using the divided visual field technique, normal subjects matched names to images of nonrigid shapes (animals) shown in canonical and noncanonical perspectives of noncontorted, typical poses of the animals. It was found that the normal subjects' RH identified these perspectives better than their LH. We conclude that computationally different problems are solved by different cerebral mechanisms when identifying flexible objects and when identifying rigid objects. We propose the idea that identifying flexible objects when their shapes contort relies on accessing stored descriptions of objects' parts and their “categorical” spatial relations and that both types of information are encoded better by the LH. In contrast, we propose that the RH is more adept at identifying different perspectives of rigid objects (and flexible objects when their shapes do not contort) because of this hemisphere's superiority in encoding specific global shapes and their views, and in coordinate spatial transformation.

[1]  M. Tarr,et al.  Levels of categorization in visual recognition studied using functional magnetic resonance imaging , 1997, Current Biology.

[2]  Elizabeth K. Warrington,et al.  Visual Apperceptive Agnosia: A Clinico-Anatomical Study of Three Cases , 1988, Cortex.

[3]  John C. Rothwell,et al.  Left posterior BA37 is involved in object recognition: a TMS study , 2001, Neuropsychologia.

[4]  Stephen M. Kosslyn,et al.  How Do the Cerebral Hemispheres Contribute to Encoding Spatial Relations? , 1998 .

[5]  Rainer Goebel,et al.  Coordinate and categorical judgements in spatial imagery. An fMRI study , 2002, Neuropsychologia.

[6]  W Richards,et al.  Encoding contour shape by curvature extrema. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[7]  I Law,et al.  Categorization and category effects in normal object recognition A PET Study , 2000, Neuropsychologia.

[8]  J. Wolfe,et al.  Preattentive Object Files: Shapeless Bundles of Basic Features , 1997, Vision Research.

[9]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[10]  Lynn C. Robertson,et al.  ‘Part-whole’ processing in unilateral brain- damaged patients: Dysfunction of hierarchical organization , 1986, Neuropsychologia.

[11]  G. Ratcliff Spatial thought, mental rotation and the right cerebral hemisphere , 1979, Neuropsychologia.

[12]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[13]  D. Kimura,et al.  Right Hemisphere Specialization for Depth Perception reflected in Visual Field Differences , 1971, Nature.

[14]  A. Carmon,et al.  Dominance of the right cerebral hemisphere for stereopsis , 1969 .

[15]  Pierre Jolicoeur,et al.  "Mental rotation and the identification of disoriented objects": Erratum. , 1989 .

[16]  C. Segebarth,et al.  Categorical and coordinate spatial relations: fMRI evidence for hemispheric specialization. , 1999, Neuroreport.

[17]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[18]  Albert Postma,et al.  Lateralization of spatial-memory processes: evidence on spatial span, maze learning, and memory for object locations , 2002, Neuropsychologia.

[19]  B. Gordon,et al.  Object shape processing in the visual system evaluated using functional MRI , 1997, Neurology.

[20]  C. B. Cave,et al.  The Role of Parts and Spatial Relations in Object Identification , 1993, Perception.

[21]  G. Humphreys,et al.  Routes to Object Constancy: Implications from Neurological Impairments of Object Constancy , 1984, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[22]  B. Milner Visual recognition and recall after right temporal-lobe excision in man , 1968, Epilepsy & Behavior.

[23]  Michael J. Tarr Is human object recognition better described by geon structural description or by multiple views , 1995 .

[24]  Ernest Greene,et al.  The effect of stroke on object recognition , 1988, Brain and Cognition.

[25]  Michael S. Gazzaniga,et al.  Hemispheric differences in mnemonic processing: The effects of left hemisphere interpretation , 1992, Neuropsychologia.

[26]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[27]  G. Gainotti,et al.  Neuroanatomical correlates of category-specific semantic disorders: a critical survey. , 1995, Memory.

[28]  S. Kosslyn,et al.  Categorical versus coordinate spatial relations: computational analyses and computer simulations. , 1992, Journal of experimental psychology. Human perception and performance.

[29]  G K Humphrey,et al.  An Examination of the Effects of Axis Foreshortening, Monocular Depth Cues, and Visual Field on Object Identification , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[30]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[31]  Soheyl Noachtar,et al.  Naming tools and animals: asymmetries observed during direct electrical cortical stimulation , 2002, Neuropsychologia.

[32]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[33]  S. Kosslyn Image and Brain , 1994 .

[34]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[35]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[36]  M Erb,et al.  Activation of right fronto-temporal cortex characterizes the 'living' category in semantic processing. , 2001, Brain research. Cognitive brain research.

[37]  I. Rock,et al.  A case of viewer-centered object perception , 1987, Cognitive Psychology.

[38]  J. Koenderink,et al.  The Shape of Smooth Objects and the Way Contours End , 1982, Perception.

[39]  D. Delis,et al.  Hemispheric specialization of memory for visual hierarchical stimuli , 1986, Neuropsychologia.

[40]  Jeffrey M. Zacks,et al.  Imagined transformations of bodies: an fMRI investigation , 1999, Neuropsychologia.

[41]  M. Goldberg,et al.  Oculocentric spatial representation in parietal cortex. , 1995, Cerebral cortex.

[42]  Peter Andersen,et al.  Mental Rotation Studied by Functional Magnetic Resonance Imaging at High Field (4 Tesla): Performance and Cortical Activation , 1997, Journal of Cognitive Neuroscience.

[43]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  I. Biederman,et al.  Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. , 1993, Journal of experimental psychology. Human perception and performance.

[45]  S M Kosslyn,et al.  Identifying objects seen from different viewpoints. A PET investigation. , 1994, Brain : a journal of neurology.

[46]  Virginia A. Mann,et al.  Right Hemisphere Specialization for Mental Rotation in Normals and Brain Damaged Subjects , 1990, Cortex.

[47]  J. Vilkki Incidental and deliberate memory for words and faces after focal cerebral lesions , 1987, Neuropsychologia.

[48]  Kara D. Federmeier,et al.  Categorical and Metric Spatial Processes Distinguished by Task Demands and Practice , 1999, Journal of Cognitive Neuroscience.

[49]  G. L. D. Buffon 368 animal illustrations from Buffon's "Natural history" , 1993 .

[50]  J. Sergent,et al.  Perceptual categorization in the cerebral hemispheres , 1983, Brain and Cognition.

[51]  A. Nakamura,et al.  Different neural systems for recognizing plants, animals, and artifacts , 2001, Brain Research Bulletin.

[52]  Glyn W. Humphreys,et al.  The Effects of View in Depth on the Identification of Line Drawings and Silhouettes of Familiar Objects: Normality and Pathology , 1999 .

[53]  Michael S. Gazzaniga,et al.  Right-Hemisphere Memory Superiority: Studies of a Split-Brain Patient , 1995 .

[54]  Melvyn A. Goodale,et al.  A neurological dissociation between shape from shading and shape from edges , 1996, Behavioural Brain Research.

[55]  M. Tarr Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects , 1995, Psychonomic bulletin & review.

[56]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[57]  S. Kosslyn,et al.  Identifying objects in conventional and contorted poses: contributions of hemisphere-specific mechanisms , 1999, Cognition.

[58]  M J Tarr,et al.  Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). , 1995, Journal of experimental psychology. Human perception and performance.

[59]  Refractor Vision , 2000, The Lancet.

[60]  M A Mintun,et al.  An examination of regional cerebral blood flow during object naming tasks , 1998, Journal of the International Neuropsychological Society.

[61]  Stephen M. Kosslyn,et al.  Form-Specific Explicit and Implicit Memory in the Right Cerebral Hemisphere , 1994 .

[62]  I. M. Harris,et al.  Selective right parietal lobe activation during mental rotation: a parametric PET study. , 2000, Brain : a journal of neurology.

[63]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[64]  Antje S. Meyer,et al.  An MEG Study of Picture Naming , 1998, Journal of Cognitive Neuroscience.

[65]  R Lawson,et al.  Achieving visual object constancy across plane rotation and depth rotation. , 1999, Acta psychologica.

[66]  Pierre Jolicoeur,et al.  Identification of Disoriented Objects: A Dual‐systems Theory , 1990 .

[67]  E. Warrington,et al.  Two Categorical Stages of Object Recognition , 1978, Perception.

[68]  R. Bruyer,et al.  Dissociation between Categorical and Coordinate Spatial Computations: Modulation by Cerebral Hemispheres, Task Properties, Mode of Response, and Age , 1997, Brain and Cognition.

[69]  G. Deco,et al.  A Neuro-Cognitive Visual System for Object Recognition Based on Testing of Interactive Attentional Top – down Hypotheses , 2000, Perception.

[70]  O. Paulson,et al.  Perceptual differentiation and category effects in normal object recognition: a PET study. , 1999, Brain : a journal of neurology.

[71]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[72]  A. Caramazza,et al.  Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction , 1998, Journal of Cognitive Neuroscience.

[73]  P. Jolicoeur The time to name disoriented natural objects , 1985, Memory & cognition.

[74]  L. Robertson,et al.  Neuropsychological contributions to theories of part/whole organization , 1991, Cognitive Psychology.

[75]  M. Coltheart Hemispheric asymmetry , 1978, Nature.

[76]  Bruno Laeng,et al.  Cerebral lateralization for the processing of spatial coordinates and categories in left- and right-handers , 1995, Neuropsychologia.

[77]  M. Moscovitch,et al.  Distinct neural correlates of visual long-term memory for spatial location and object identity: a positron emission tomography study in humans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Shiffrar,et al.  The visual representation of three-dimensional, rotating objects. , 1999, Acta psychologica.

[79]  P. Jolicoeur Mental rotation and the identification of disoriented objects. , 1988, Canadian journal of psychology.

[80]  Jon Driver,et al.  One-Sided Edge Assignment in Vision: 2. Part Decomposition, Shape Description, and Attention to Objects , 1995 .

[81]  C. B. Cave,et al.  Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. , 1989, Journal of experimental psychology. Human perception and performance.

[82]  Karl J. Friston,et al.  The neural regions sustaining object recognition and naming , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[83]  E. Rolls High-level vision: Object recognition and visual cognition, Shimon Ullman. MIT Press, Bradford (1996), ISBN 0 262 21013 4 , 1997 .

[84]  S. Edelman,et al.  Orientation dependence in the recognition of familiar and novel views of three-dimensional objects , 1992, Vision Research.

[85]  J. Démonet,et al.  Hemispheric preponderance in categorical and coordinate visual processes , 1999, Neuropsychologia.

[86]  Drew H. Abney,et al.  Journal of Experimental Psychology : Human Perception and Performance Influence of Musical Groove on Postural Sway , 2015 .

[87]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[88]  Dan Costin,et al.  MacLab: A Macintosh system for psychology labs , 1988 .

[89]  A. Caramazza,et al.  Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction , 1998, Journal of Cognitive Neuroscience.

[90]  J. Vauclair,et al.  Comparative Assessment of Distance Processing and Hemispheric Specialization in Humans and Baboons (Papio papio) , 1998, Brain and Cognition.

[91]  M. Petrides,et al.  Functional activation of the human brain during mental rotation , 1997, Neuropsychologia.

[92]  D. Perrett,et al.  Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations , 1998, Cognition.

[93]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[94]  T Kogure,et al.  Hemisphere specialisation and categorical spatial relations representations. , 1999, Laterality.

[95]  Myrna F. Schwartz,et al.  Of cabbages and things: Semantic memory from a neuropsychological perspective—A tutorial review. , 1994 .

[96]  G. Ettlinger,et al.  Impaired Visual Perceptual Categorization in Right Brain-Damaged Patients: Failure To Replicate , 1992, Cortex.

[97]  Elizabeth K. Warrington,et al.  A New Test of Object Decision: 2D Silhouettes Featuring a Minimal View , 1991, Cortex.

[98]  D. Perani,et al.  Different neural systems for the recognition of animals and man‐made tools , 1995, Neuroreport.

[99]  S. Kosslyn,et al.  Form-specific visual priming in the right cerebral hemisphere. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[100]  I. Rybak,et al.  A model of attention-guided visual perception and recognition , 1998, Vision Research.

[101]  B McCabe,et al.  Memory for locations within regions: Spatial biases and visual hemifield differences , 1998, Memory & cognition.

[102]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[103]  E. Warrington,et al.  Visual Object Recognition in Patients with Right-Hemisphere Lesions: Axes or Features? , 1986, Perception.

[104]  E. Warrington Neuropsychological studies of object recognition. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[105]  A. Taylor,et al.  The contribution of the right parietal lobe to object recognition. , 1973, Cortex; a journal devoted to the study of the nervous system and behavior.

[106]  I. Biederman,et al.  Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. , 1993 .

[107]  G. Orban,et al.  Positron-emission tomography imaging of long-term shape recognition challenges. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Hellige,et al.  Categorization versus distance: Hemispheric differences for processing spatial information , 1989, Memory & cognition.

[109]  M. V. Kleeck Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: New data and a meta-analysis of previous studies , 1989, Neuropsychologia.

[110]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[111]  Georg Deutsch,et al.  Left brain, right brain : perspectives from cognitive neuroscience , 1998 .

[112]  S. Kosslyn Seeing and imagining in the cerebral hemispheres: a computational approach. , 1987, Psychological review.

[113]  A. Damasio,et al.  A neural basis for lexical retrieval , 1996, Nature.

[114]  Verne S. Caviness,et al.  Prosopagnosia as a Deficit in Encoding Curved Surface , 2001, Journal of Cognitive Neuroscience.

[115]  B. Laeng Lateralization of Categorical and Coordinate Spatial Functions: A Study of Unilateral Stroke Patients , 1994, Journal of Cognitive Neuroscience.