Nodal variables for complete conforming finite elements of arbitrary polynomial order

[1]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[2]  G. M. Lindberg,et al.  A shallow shell finite element of triangular shape , 1970 .

[3]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[4]  M. Zlámal,et al.  A simple algorithm for the stiffness matrix of triangular plate bending elements , 1971 .

[5]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[6]  John F. Abel,et al.  Comparison of Finite Elements for Plate Bending , 1972 .

[7]  Barna A. Szabó,et al.  The quadratic programming approach to the finite element method , 1973 .

[8]  G. Strang Piecewise polynomials and the finite element method , 1973 .

[9]  Robert E. Ball,et al.  A Comparison of Several Computer Solutions to Three Structural Shell Analysis Problems. , 1973 .

[10]  I. N. Katz,et al.  ADVANCED DESIGN TECHNOLOGY FOR RAIL TRANSPORTATION VEHICLES , 1974 .

[11]  B. Szabó,et al.  Conforming finite elements based on complete polynomials , 1974 .

[12]  L. R. Scott,et al.  A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .

[13]  Barna A. Szabó,et al.  Linear equality constraints in finite element approximation , 1975 .

[14]  Alberto Peano,et al.  Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .

[15]  Mark P. Rossow,et al.  COMPUTER IMPLEMENTATION OF THE CONSTRAINT METHOD , 1976 .

[16]  Computational Efficiency of Plate Elements , 1977 .

[17]  I. Katz,et al.  Hierarchal finite elements and precomputed arrays , 1978 .