Nodal variables for complete conforming finite elements of arbitrary polynomial order
暂无分享,去创建一个
[1] F. Bogner,et al. The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .
[2] G. M. Lindberg,et al. A shallow shell finite element of triangular shape , 1970 .
[3] Bruce M. Irons,et al. A frontal solution program for finite element analysis , 1970 .
[4] M. Zlámal,et al. A simple algorithm for the stiffness matrix of triangular plate bending elements , 1971 .
[5] O. Zienkiewicz. The Finite Element Method In Engineering Science , 1971 .
[6] John F. Abel,et al. Comparison of Finite Elements for Plate Bending , 1972 .
[7] Barna A. Szabó,et al. The quadratic programming approach to the finite element method , 1973 .
[8] G. Strang. Piecewise polynomials and the finite element method , 1973 .
[9] Robert E. Ball,et al. A Comparison of Several Computer Solutions to Three Structural Shell Analysis Problems. , 1973 .
[10] I. N. Katz,et al. ADVANCED DESIGN TECHNOLOGY FOR RAIL TRANSPORTATION VEHICLES , 1974 .
[11] B. Szabó,et al. Conforming finite elements based on complete polynomials , 1974 .
[12] L. R. Scott,et al. A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .
[13] Barna A. Szabó,et al. Linear equality constraints in finite element approximation , 1975 .
[14] Alberto Peano,et al. Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .
[15] Mark P. Rossow,et al. COMPUTER IMPLEMENTATION OF THE CONSTRAINT METHOD , 1976 .
[16] Computational Efficiency of Plate Elements , 1977 .
[17] I. Katz,et al. Hierarchal finite elements and precomputed arrays , 1978 .