An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model

In this paper, we introduce fully implementable, adaptive Euler-Maruyama schemes for McKean-Vlasov SDEs assuming only a standard monotonicity condition on the drift and diffusion coefficients but no global Lipschitz continuity for either. We prove moment stability of the discretised processes and a strong convergence rate of $1/2$. We present several numerical examples centred around a mean-field model for FitzHugh-Nagumo neurons, which illustrate that the standard uniform scheme fails and that the adaptive approach shows in most cases superior performance compared to tamed approximation schemes. In addition, we introduce and analyse an adaptive Milstein scheme for a certain sub-class of McKean-Vlasov SDEs with linear measure-dependence of the drift.

[1]  J. Touboul,et al.  Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons , 2012, The Journal of Mathematical Neuroscience.

[2]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[3]  Olivier Faugeras,et al.  Clarification and Complement to “Mean-Field Description and Propagation of Chaos in Networks of Hodgkin–Huxley and FitzHugh–Nagumo Neurons” , 2014, Journal of mathematical neuroscience.

[4]  Heping Ma,et al.  Order-preserving strong schemes for SDEs with locally Lipschitz coefficients , 2014, 1402.3708.

[5]  Christoph Reisinger,et al.  Convergence of an Euler Scheme for a Hybrid Stochastic-Local Volatility Model with Stochastic Rates in Foreign Exchange Markets , 2015, SIAM J. Financial Math..

[6]  M. Hp A class of markov processes associated with nonlinear parabolic equations. , 1966 .

[7]  Christoph Reisinger,et al.  First order convergence of Milstein schemes for McKean equations and interacting particle systems , 2020, ArXiv.

[8]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[9]  Neelima,et al.  On Explicit Milstein-type Scheme for Mckean-Vlasov Stochastic Differential Equations with Super-linear Drift Coefficient , 2020, Electronic Journal of Probability.

[10]  François Delarue,et al.  Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games , 2018 .

[11]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[12]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[13]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[14]  Denis Belomestny,et al.  Projected Particle Methods for Solving McKean-Vlasov Stochastic Differential Equations , 2017, SIAM J. Numer. Anal..

[15]  Xiaojie Wang,et al.  The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients , 2011, 1102.0662.

[16]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[17]  Chaman Kumar,et al.  On Milstein approximations with varying coefficients: the case of super-linear diffusion coefficients , 2016, BIT Numerical Mathematics.

[18]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[19]  Christoph Reisinger,et al.  Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process , 2017, IMA Journal of Numerical Analysis.

[20]  C'onall Kelly,et al.  Strong convergence of an adaptive time-stepping Milstein method for SDEs with one-sided Lipschitz drift , 2019, ArXiv.

[21]  G. dos Reis,et al.  Simulation of McKean–Vlasov SDEs with super-linear growth , 2018, IMA Journal of Numerical Analysis.

[22]  R. Carmona,et al.  Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations , 2018 .

[23]  Michael B. Giles,et al.  Adaptive Euler–Maruyama method for SDEs with nonglobally Lipschitz drift , 2020 .

[24]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[25]  F. Malrieu Convergence to equilibrium for granular media equations and their Euler schemes , 2003 .

[26]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[27]  Christoph Reisinger,et al.  Milstein schemes for delay McKean equations and interacting particle systems , 2020, ArXiv.

[28]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[29]  L. Szpruch,et al.  Weak quantitative propagation of chaos via differential calculus on the space of measures , 2019, The Annals of Applied Probability.

[30]  L. Szpruch,et al.  McKean–Vlasov SDEs under measure dependent Lyapunov conditions , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[31]  Christoph Reisinger,et al.  Well-posedness and tamed schemes for McKean-Vlasov Equations with Common Noise , 2020, The Annals of Applied Probability.

[32]  Mireille Bossy,et al.  A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..

[33]  F. Delarue,et al.  Particle systems with a singular mean-field self-excitation. Application to neuronal networks , 2014, 1406.1151.

[34]  K. Spiliopoulos,et al.  Default clustering in large portfolios: Typical events. , 2011, 1104.1773.

[35]  A. Veretennikov,et al.  On Ergodic Measures for McKean-Vlasov Stochastic Equations , 2006 .

[36]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[37]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[38]  H. McKean,et al.  A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Sabanis Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients , 2013, 1308.1796.

[40]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[41]  Michael B. Giles,et al.  Adaptive Euler-Maruyama Method for SDEs with Non-globally Lipschitz Drift: Part I, Finite Time Interval , 2016, 1703.06743.

[42]  Zhongqiang Zhang,et al.  A Fundamental Mean-Square Convergence Theorem for SDEs with Locally Lipschitz Coefficients and Its Applications , 2012, SIAM J. Numer. Anal..

[43]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[44]  Michael Ludkovski,et al.  Mean Field Game Approach to Production and Exploration of Exhaustible Commodities , 2017, 1710.05131.

[45]  Xuerong Mao,et al.  The truncated Euler-Maruyama method for stochastic differential equations , 2015, J. Comput. Appl. Math..

[46]  Lukasz Szpruch,et al.  Antithetic multilevel particle system sampling method for McKean-Vlasov SDEs , 2019, 1903.07063.

[47]  Dung Nguyen Tien A stochastic Ginzburg–Landau equation with impulsive effects , 2013 .

[48]  William Salkeld,et al.  Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law , 2017, The Annals of Applied Probability.

[49]  Michael B. Giles,et al.  Multilevel Monte Carlo method for ergodic SDEs without contractivity , 2018, Journal of Mathematical Analysis and Applications.

[50]  Florent Malrieu,et al.  Logarithmic Sobolev Inequalities for Some Nonlinear Pde's , 2001 .

[51]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[52]  A. Sznitman Topics in propagation of chaos , 1991 .

[53]  Christoph Reisinger,et al.  Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process , 2015, 1601.00919.

[54]  Mireille Bossy,et al.  New particle representations for ergodic McKean-Vlasov SDEs , 2019, ESAIM: Proceedings and Surveys.

[55]  A. Eberle,et al.  Quantitative Harris-type theorems for diffusions and McKean–Vlasov processes , 2016, Transactions of the American Mathematical Society.

[56]  M. Kac Foundations of Kinetic Theory , 1956 .

[57]  C'onall Kelly,et al.  Adaptive Euler methods for stochastic systems with non-globally Lipschitz coefficients , 2018, Numer. Algorithms.

[58]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[59]  S. Sabanis A note on tamed Euler approximations , 2013, 1303.5504.

[60]  P. Glynn,et al.  Probability Theory and Stochastic Modelling , 2016 .

[61]  Christoph Reisinger,et al.  Simulation of particle systems interacting through hitting times , 2018, 1805.11678.

[62]  Michael Scheutzow,et al.  Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions , 2018, The Annals of Applied Probability.

[63]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  K. Ramanan,et al.  From the master equation to mean field game limit theory: a central limit theorem , 2018, Electronic Journal of Probability.

[65]  B. Hambly,et al.  A McKean–Vlasov equation with positive feedback and blow-ups , 2018, The Annals of Applied Probability.

[66]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[67]  Alain Durmus,et al.  An elementary approach to uniform in time propagation of chaos , 2018, Proceedings of the American Mathematical Society.

[68]  Raúl Tempone,et al.  Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation , 2016, Statistics and Computing.

[69]  Martin Bauer,et al.  Strong Solutions of Mean-Field Stochastic Differential Equations with irregular drift , 2018, 1806.11451.

[70]  Michael B. Giles,et al.  Non-nested Adaptive Timesteps in Multilevel Monte Carlo Computations , 2014, MCQMC.

[71]  P. Cattiaux,et al.  Probabilistic approach for granular media equations in the non-uniformly convex case , 2006, math/0603541.

[72]  A. Veretennikov,et al.  Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations , 2016 .