DAEMA: Denoising Autoencoder with Mask Attention
暂无分享,去创建一个
Thomas Peel | Damien Fourure | Muhammad Usama Javaid | Simon Tihon | Nicolas Posocco | Thomas Peel | Damien Fourure | Simon Tihon | N. Posocco
[1] Yoshua Bengio,et al. Generative Adversarial Nets , 2014, NIPS.
[2] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[3] Pablo M. Olmos,et al. Handling Incomplete Heterogeneous Data using VAEs , 2018, Pattern Recognit..
[4] Yoshua Bengio,et al. Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.
[5] Simone Scardapane,et al. Missing Data Imputation with Adversarially-trained Graph Convolutional Networks , 2019, Neural Networks.
[6] Theodoros Rekatsinas,et al. Attention-based Learning for Missing Data Imputation in HoloClean , 2020, MLSys.
[7] Radu State,et al. Improving Missing Data Imputation with Deep Generative Models , 2019, ArXiv.
[8] Ao Li,et al. Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme , 2006, BMC Bioinformatics.
[9] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[10] Lidia Auret,et al. Variational Autoencoders for Missing Data Imputation with Application to a Simulated Milling Circuit , 2018 .
[11] Ke Wang,et al. MIDA: Multiple Imputation Using Denoising Autoencoders , 2017, PAKDD.
[12] Mihaela van der Schaar,et al. GAIN: Missing Data Imputation using Generative Adversarial Nets , 2018, ICML.
[13] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[14] Russ B. Altman,et al. Missing value estimation methods for DNA microarrays , 2001, Bioinform..
[15] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[16] Lukasz Kaiser,et al. Attention is All you Need , 2017, NIPS.
[17] Dan Jackson,et al. What Is Meant by "Missing at Random"? , 2013, 1306.2812.
[18] Wencheng Wu,et al. McFlow: Monte Carlo Flow Models for Data Imputation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[19] Stef van Buuren,et al. MICE: Multivariate Imputation by Chained Equations in R , 2011 .
[20] Aaron C. Courville,et al. Improved Training of Wasserstein GANs , 2017, NIPS.
[21] Peter Bühlmann,et al. MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..