Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors : recent trends

Abstract As a prerequiste for a systematic improvement of oxide-based chemical sensors, experimental studies will be presented to determine charge-transfer reactions as well as of charge-carrier transport and relaxation mechanisms at surfaces and interfaces of SnO2. Typical examples will be given to characterize nanocrystalline SnO2 by transmission electron microscopy and impedance spectroscopy. Systematic investigations on structures and properties of single-crystalline TiO2 surfaces modifield with Pt will be described.

[1]  G. Thornton Molecular Adsorption on TiO2 and ZnO Surfaces , 1993 .

[2]  B. Mann,et al.  The detection and measurement of CO using ZnO single crystals , 1984 .

[3]  W. Göpel,et al.  Schottky Barriers and Ohmic Contacts with Pt/TiO2(110): Implications to Control Gas Sensor Properties , 1993 .

[4]  U. Weimar,et al.  Pattern recognition methods for gas mixture analysis: Application to sensor arrays based upon SnO2 , 1990 .

[5]  W. Gőpel Chemisorption and charge transfer at ionic semiconductor surfaces: Implications in designing gas sensors , 1985 .

[6]  Helmut Geistlinger,et al.  Electron theory of thin-film gas sensors , 1993 .

[7]  K. Ihokura,et al.  The Stannic Oxide Gas SensorPrinciples and Applications , 1994 .

[8]  P. T. Moseley,et al.  Techniques and Mechanisms in Gas Sensing , 1991 .

[9]  N. Bârsan,et al.  Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence , 1994 .

[10]  T. Seiyama,et al.  Chemical sensor technology , 1988 .

[11]  Wen H. Ko,et al.  Capacitive pressure transducers with integrated circuits , 1983 .

[12]  U. Weimar,et al.  Specific palladium and platinum doping for SnO2-based thin film sensor arrays , 1993 .

[13]  Udo Weimar,et al.  Multicomponent gas analysis: An analytical chemistry approach applied to modified SnO2 sensors , 1990 .

[14]  W. Göpel,et al.  Defect structure and sensing mechanism of SnO2 gas sensors: Comparative electrical and spectroscopic studies , 1988 .

[15]  W. Göpel,et al.  The geometric structure of intrinsic defects at TiO2(110) surfaces: an STM study , 1995 .

[16]  G. Sberveglieri,et al.  Gas sensors : principles, operation and developments , 1992 .

[17]  C. Nylander,et al.  Chemical and biological sensors , 1985 .

[18]  Udo Weimar,et al.  Comparison of ceramic, thick-film and thin-film chemical sensors based upon SnO2 , 1992 .

[19]  Wolfgang Göpel,et al.  Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2 , 1991 .

[20]  W. Göpel,et al.  Low and high temperature TiO2 oxygen sensors , 1990 .

[21]  Gustafsson,et al.  Scanning-tunneling-microscopy study of the atomic-scale structure of TiO2(110)-(1 x 1). , 1994, Physical review. B, Condensed matter.

[22]  Hikaru Kobayashi,et al.  Mechanism of hydrogen sensing by Pd/TiO2 Schottky diodes , 1993 .

[23]  Ingemar Lundström,et al.  Hydrogen sensitive mos-structures: Part 1: Principles and applications , 1981 .

[24]  José A. Martín-Gago,et al.  The interaction of Pt with TiO2(110) surfaces: a comparative XPS, UPS, ISS, and ESD study , 1996 .

[25]  D. Kohl Surface processes in the detection of reducing gases with SnO2-based devices , 1989 .

[26]  Wolfgang Göpel,et al.  Chemical and biochemical sensors , 1991 .

[27]  Udo Weimar,et al.  Conductance, work function and catalytic activity of SnO2-based gas sensors , 1991 .