Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package

This paper introduces the package gmnl in R for estimation of multinomial logit models with unobserved heterogeneity across individuals for cross-sectional and panel (longitudinal) data. Unobserved heterogeneity is modeled by allowing the parameters to vary randomly over individuals according to a continuous, discrete, or discrete-continuous mixture distribution, which must be chosen a priori by the researcher. In particular, the models supported by gmnl are the multinomial or conditional logit, the mixed multinomial logit, the scale heterogeneity multinomial logit, the generalized multinomial logit, the latent class logit, and the mixed-mixed multinomial logit. These models are estimated using either the maximum likelihood estimator or the maximum simulated likelihood estimator. This article describes and illustrates with real databases all functionalities of gmnl, including the derivation of individual conditional estimates of both the random parameters and willingness-to-pay measures.

[1]  Andrew Daly,et al.  Assuring finite moments for willingness to pay in random coefficient models , 2009 .

[2]  Nada Wasi,et al.  COMPARING ALTERNATIVE MODELS OF HETEROGENEITY IN CONSUMER CHOICE BEHAVIOR , 2012 .

[3]  David A. Hensher,et al.  Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model , 2010 .

[4]  Thomas Otter,et al.  Heterogeneity distributions of willingness-to-pay in choice models , 2007 .

[5]  David A. Hensher,et al.  The Mixed Logit Model: the State of Practice and Warnings for the Unwary , 2001 .

[6]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[7]  C. Bhat Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model , 2001 .

[8]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[9]  Achim Zeileis,et al.  Applied Econometrics with R , 2008 .

[10]  David A. Hensher,et al.  Does scale heterogeneity across individuals matter? An empirical assessment of alternative logit models , 2010 .

[11]  P. Boxall,et al.  Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach , 2002 .

[12]  Zsolt Sándor,et al.  Quasi-random simulation of discrete choice models , 2004 .

[13]  A. Zeileis,et al.  Extended Model Formulas in R : Multiple Parts and Multiple Responses , 2010 .

[14]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[15]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[16]  Paul A. Ruud,et al.  Handbook of Econometrics: Classical Estimation Methods for LDV Models Using Simulation , 1993 .

[17]  Kenneth Train,et al.  Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps , 2008 .

[18]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[19]  Florian Heiss,et al.  Discrete Choice Methods with Simulation , 2016 .

[20]  Arne Henningsen,et al.  maxLik: A package for maximum likelihood estimation in R , 2011, Comput. Stat..

[21]  Christopher H. Jackson,et al.  Multi-State Models for Panel Data: The msm Package for R , 2011 .

[22]  F. Leisch FlexMix: A general framework for finite mixture models and latent class regression in R , 2004 .

[23]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[24]  Ricardo A. Daziano,et al.  Accounting for Uncertainty in Willingness to Pay for Environmental Benefits , 2013 .

[25]  T. Yee The VGAM Package for Categorical Data Analysis , 2010 .

[26]  Lung-fei Lee On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models , 1992, Econometric Theory.

[27]  Robert L. Hicks,et al.  Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach , 2010 .

[28]  John M. Rose,et al.  Can scale and coefficient heterogeneity be separated in random coefficients models? , 2012 .

[29]  Junyi Shen Latent class model or mixed logit model? A comparison by transport mode choice data , 2009 .

[30]  Stephane Hess,et al.  Linking Response Quality to Survey Engagement: A Combined Random Scale and Latent Variable Approach , 2013 .

[31]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[32]  Kenneth Train,et al.  EM algorithms for nonparametric estimation of mixing distributions , 2008 .

[33]  Drew A. Linzer,et al.  poLCA: An R Package for Polytomous Variable Latent Class Analysis , 2011 .

[34]  R. Scarpa,et al.  Destination Choice Models for Rock Climbing in the Northeastern Alps: A Latent-Class Approach Based on Intensity of Preferences , 2005, Land Economics.

[35]  Kenneth Train,et al.  Discrete Choice Models in Preference Space and Willingness-to Pay Space , 2005 .

[36]  Achim Zeileis,et al.  Diagnostic Checking in Regression Relationships , 2015 .

[37]  Kosuke Imai,et al.  MNP: R Package for Fitting the Multinomial Probit Model , 2005 .

[38]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .