Electrode structure enabling dendrite inhibition for high cycle stability quasi-solid-state lithium metal batteries

[1]  Donghui Long,et al.  An ion-released MgI2-doped separator inducing a LiI-containing solid electrolyte interphase for dendrite-free Li metal anodes , 2022, Journal of Energy Chemistry.

[2]  Yan‐Bing He,et al.  Topology Crafting of Polyvinylidene Difluoride Electrolyte Creates Ultra-Long Cycling High-Voltage Lithium Metal Solid-State Batteries , 2022, Energy Storage Materials.

[3]  Chuanliang Wei,et al.  Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte , 2022, Journal of Energy Chemistry.

[4]  Wei Yan,et al.  Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. , 2021, Angewandte Chemie.

[5]  Jinbao Zhao,et al.  Constructing a uniform lithium iodide layer for stabilizing lithium metal anode , 2021 .

[6]  B. Cheng,et al.  High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery , 2021, Journal of Energy Chemistry.

[7]  Chao Lai,et al.  Functional lithiophilic polymer modified separator for dendrite-free and pulverization-free lithium metal batteries , 2021, Journal of Energy Chemistry.

[8]  P. Mukherjee,et al.  Mechanistics of Lithium Metal Battery Performance by Separator Architecture Design. , 2019, ACS applied materials & interfaces.

[9]  Jiayan Luo,et al.  Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. , 2019, Accounts of chemical research.

[10]  Jiaqi Huang,et al.  Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries , 2019, Journal of Energy Chemistry.

[11]  Ya‐Xia Yin,et al.  Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. , 2019, Journal of the American Chemical Society.

[12]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[13]  F. Kang,et al.  Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries , 2018, Nature Communications.

[14]  Hongkyung Lee,et al.  Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator , 2017 .

[15]  Wei Li,et al.  Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries. , 2017, ACS applied materials & interfaces.

[16]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[17]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[18]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[19]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[20]  Zhenan Bao,et al.  High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating , 2016 .

[21]  Li-zhen Fan,et al.  Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries , 2015 .

[22]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[23]  Zhen Zhou,et al.  Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries , 2012, Journal of Applied Electrochemistry.