Interspecies Electron Transfer during Propionate and Butyrate Degradation in Mesophilic, Granular Sludge

Granules from a mesophilic upflow anaerobic sludge blanket reactor were disintegrated, and bacteria utilizing only hydrogen or formate or both hydrogen and formate were added to investigate the role of interspecies electron transfer during degradation of propionate and butyrate. The data indicate that the major electron transfer occurred via interspecies hydrogen transfer, while interspecies formate transfer may not be essential for interspecies electron transfer in this system during degradation of propionate and butyrate.

[1]  Alfons J. M. Stams,et al.  Anaerobic Degradation of Propionate by a Mesophilic Acetogenic Bacterium in Coculture and Triculture with Different Methanogens , 1994, Applied and environmental microbiology.

[2]  B. Ahring,et al.  Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor , 1993, Applied and environmental microbiology.

[3]  Birgitte Kiær Ahring,et al.  Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors , 1993 .

[4]  Alfons J. M. Stams,et al.  Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum , 1992, Applied and environmental microbiology.

[5]  D. Boone,et al.  Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of Km for H2 or Formate Uptake , 1989, Applied and environmental microbiology.

[6]  Gatze Lettinga,et al.  Granular Anaerobic Sludge, Microbiology and Technology , 1988 .

[7]  J. Tiedje,et al.  Bioenergetic Conditions of Butyrate Metabolism by a Syntrophic, Anaerobic Bacterium in Coculture with Hydrogen-Oxidizing Methanogenic and Sulfidogenic Bacteria , 1988, Applied and environmental microbiology.

[8]  S. Zinder,et al.  Hydrogen Partial Pressures in a Thermophilic Acetate-Oxidizing Methanogenic Coculture , 1988, Applied and environmental microbiology.

[9]  M. Chartrain,et al.  Control of Interspecies Electron Flow during Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis , 1988, Applied and environmental microbiology.

[10]  Birgitte K. Ahring,et al.  Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria , 1987, Applied and environmental microbiology.

[11]  Birgitte K. Ahring,et al.  Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture , 1987, Applied and environmental microbiology.

[12]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[13]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[14]  A. Stams,et al.  Structure function relationship in granular sludge. , 1989 .