Lineal: A linear-algebraic Lambda-calculus

We provide a computational definition of the notions of vector space and bilinear functions. We use this result to introduce a minimal language combining higher-order computation and linear algebra. This language extends the Lambda-calculus with the possibility to make arbitrary linear combinations of terms alpha.t + beta.u. We describe how to "execute" this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the field of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally, we prove the confluence of the entire calculus.

[1]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[2]  Hans Zantema,et al.  Rewrite Systems for Integer Arithmetic , 1995, RTA.

[3]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[4]  J GaySimon,et al.  Quantum programming languages: survey and bibliography , 2006 .

[5]  Terry Rudolph,et al.  A 2 rebit gate universal for quantum computing , 2002 .

[6]  Benoît Valiron,et al.  A typed, algebraic, computational lambda-calculus† , 2013, Mathematical Structures in Computer Science.

[7]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[8]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[9]  Daniel J. Dougherty Adding Algebraic Rewriting to the Untyped Lambda Calculus , 1992, Inf. Comput..

[10]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[11]  Gérard P. Huet,et al.  A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm , 1981, J. Comput. Syst. Sci..

[12]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[13]  D. Aharonov Quantum Computation , 1998, quant-ph/9812037.

[14]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[15]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[16]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[17]  Pablo Arrighi,et al.  Scalar System F for Linear-Algebraic λ-Calculus: Towards a Quantum Physical Logic , 2011, Electron. Notes Theor. Comput. Sci..

[18]  Hélène Kirchner,et al.  Completion of a Set of Rules Modulo a Set of Equations , 1986, SIAM J. Comput..

[19]  V. Roychowdhury,et al.  On Universal and Fault-Tolerant Quantum Computing , 1999, quant-ph/9906054.

[20]  Gilles Dowek,et al.  Linear-algebraic lambda-calculus , 2005 .

[21]  Catuscia Palamidessi,et al.  Probabilistic Asynchronous pi-Calculus , 2000, FoSSaCS.

[22]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[23]  Manuel E. Lladser,et al.  Quantum Computation , 2018, Scholarpedia.

[24]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[25]  Gérard Boudol,et al.  Lambda-Calculi for (Strict) Parallel Functions , 1994, Inf. Comput..

[26]  Mark E. Stickel,et al.  Complete Sets of Reductions for Some Equational Theories , 1981, JACM.

[27]  Thorsten Altenkirch,et al.  An Algebra of Pure Quantum Programming , 2007, Electron. Notes Theor. Comput. Sci..

[28]  Frédéric Prost,et al.  Reasoning about Entanglement and Separability in Quantum Higher-Order Functions , 2009, UC.

[29]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[30]  Gilles Dowek,et al.  Linear-algebraic lambda-calculus: higher-order, encodings, and confluence , 2008, RTA.

[31]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[32]  Michael A. Nielsen,et al.  Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .

[33]  André van Tonder,et al.  A Lambda Calculus for Quantum Computation , 2003, SIAM J. Comput..

[34]  B. Valiron,et al.  Beyond Quantum Computers , 2009 .

[35]  Benoît Valiron,et al.  A lambda calculus for quantum computation with classical control , 2004, Mathematical Structures in Computer Science.

[36]  Thomas Ehrhard A Finiteness Structure on Resource Terms , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[37]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[38]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[39]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[40]  Simon Perdrix,et al.  Quantum Entanglement Analysis Based on Abstract Interpretation , 2008, SAS.

[41]  Hans J. Briegel,et al.  The one-way quantum computer--a non-network model of quantum computation , 2001, quant-ph/0108118.

[42]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[43]  Simon Perdrix,et al.  Equivalence of algebraic λ-calculi , 2010 .

[44]  Christine Tasson Algebraic totality, towards completeness , 2009, LICS 2009.

[45]  Pablo Arrighi,et al.  A System F accounting for scalars , 2009, 0903.3741.

[46]  Lionel Vaux On Linear Combinations of lambda -Terms , 2007, RTA.

[47]  Phil Watson,et al.  An Efficient Representation of Arithmetic for Term Rewriting , 1991, RTA.

[48]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[49]  Pablo Arrighi,et al.  Scalar System F for Linear-Algebraic Lambda-Calculus: Towards a Quantum Physical Logic , 2012, Log. Methods Comput. Sci..

[50]  Thomas Ehrhard,et al.  Finiteness spaces , 2005, Mathematical Structures in Computer Science.

[51]  B. Valiron,et al.  About Typed Algebraic Lambda-calculi , 2009 .

[52]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[53]  Olivier Bournez,et al.  Rewriting Logic and Probabilities , 2003, RTA.

[54]  Chris Hankin,et al.  Probabilistic λ-calculus and Quantitative Program Analysis , 2004 .

[55]  Andr'e van Tonder,et al.  Quantum Computation, Categorical Semantics and Linear Logic , 2003, ArXiv.

[56]  Simon J. Gay,et al.  Quantum Programming Languages Survey and Bibliography , 2006 .

[57]  Simon Perdrix STATE TRANSFER INSTEAD OF TELEPORTATION IN MEASUREMENT-BASED QUANTUM COMPUTATION , 2005 .

[58]  Gilles Dowek,et al.  A computational definition of the notion of vectorial space , 2004, WRLA.