Hierarchies and reducibilities on regular languages related to modulo counting
暂无分享,去创建一个
[1] Heribert Vollmer,et al. The Chain Method to Separate Counting Classes , 1998, Theory of Computing Systems.
[2] Howard Straubing,et al. Actions, wreath products of C-varieties and concatenation product , 2006, Theor. Comput. Sci..
[3] Zoltán Ésik,et al. Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..
[4] Klaus W. Wagner. Leaf Language Classes , 2004, MCU.
[5] Thomas Wilke,et al. Classifying Discrete Temporal Properties , 1999, STACS.
[6] Christian Glaßer,et al. The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..
[7] Pierluigi Crescenzi,et al. A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..
[8] Howard Straubing,et al. On Logical Descriptions of Regular Languages , 2002, LATIN.
[9] Victor L. Selivanov. Relating Automata-Theoretic Hierarchies to Complexity-Theoretic Hierarchies , 2001, FCT.
[10] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[11] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[12] Bernd Borchert. On the Acceptance Power of Regular Languages , 1994, STACS.
[13] Christian Glaßer,et al. Languages polylog-time reducible to dot-depth 1/2 , 2007, J. Comput. Syst. Sci..
[14] Victor L. Selivanov,et al. Fine Hierarchy of Regular Aperiodic omega -Languages , 2007, Developments in Language Theory.
[15] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[16] N. Vereshchagin. RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .
[17] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[18] Frank Stephan,et al. On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.
[19] Howard Straubing,et al. regular Languages Defined with Generalized Quantifiers , 1988, ICALP.
[20] Christian Glaßer,et al. Polylog-Time Reductions Decrease Dot-Depth , 2005, STACS.
[21] R. McNaughton,et al. Counter-Free Automata , 1971 .
[22] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[23] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[24] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[25] Robert McNaughton,et al. Algebraic decision procedures for local testability , 1974, Mathematical systems theory.
[26] Kim G. Larsen,et al. Regular languages definable by Lindström quantifiers , 2003, RAIRO Theor. Informatics Appl..
[27] Gerd Wechsung,et al. A survey on counting classes , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.
[28] Gerd Wechsung,et al. Counting classes with finite acceptance types , 1987 .
[29] Berndt Farwer,et al. ω-automata , 2002 .
[30] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[31] Thomas Schwentick,et al. On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[32] Victor L. Selivanov. A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.
[33] Victor L. Selivanov,et al. A reducibility for the dot-depth hierarchy , 2005, Theor. Comput. Sci..
[34] Victor L. Selivanov. Some Reducibilities on Regular Sets , 2005, CiE.
[35] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[36] Pascal Weil,et al. Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.
[37] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[38] Howard Straubing,et al. Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..
[39] A. Kechris. Classical descriptive set theory , 1987 .
[40] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.