Experimental investigation of phase relations and thermodynamic properties in the ZrO2–TiO2 system

Phase relations in the ZrO2–TiO2 system were studied experimentally using X-ray diffraction (XRD), scanning electron microscopy combined with dispersive X-ray spectrometry (SEM/EDX) and differential thermal analysis (DTA). The homogeneity ranges of ZrO2 and TiO2, as well as high temperature disordered β-(ZrxTi1−x)2O4 compound were defined in the temperature range of 1700-2040 K. Temperature and composition of eutectic reaction were measured. The standard enthalpy of formation of the β-ZrTiO4 compound was obtained using high-temperature oxide-melt solution calorimetry. High temperature heat capacity measurement for the β-ZrTiO4 compound was performed in the temperature range from 250 K to 1200 K. Thermodynamic description of ZrO2–TiO2 system has been derived based on obtained experimental results and data from literature.

[1]  A. Navrotsky,et al.  The thermodynamics of formation, molar heat capacity, and thermodynamic functions ofZrTiO4(cr) , 2001 .

[2]  K. Arata,et al.  Isomerization of Cyclohexene Oxide over Solid Acids and Bases , 1980 .

[3]  A. Dinsdale SGTE data for pure elements , 1991 .

[4]  U. Troitzsch,et al.  The ZrO2-TiO2 phase diagram , 2005 .

[5]  R. Roth,et al.  Investigation of the Phase Transition in ZrTiO4 and ZrTiO4‐SnO2 Solid Solutions , 1983 .

[6]  H. Göbel,et al.  Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z=2) , 1981 .

[7]  H. Biermann,et al.  Microstructure and Compression Strength of Novel TRIP‐Steel/Mg‐PSZ Composites , 2009 .

[8]  O. Fabrichnaya,et al.  Experimental investigation and thermodynamic modeling of the ZrO2–MnOx system , 2014 .

[9]  M. Hillert The compound energy formalism , 2001 .

[10]  T. Schaedler,et al.  Phase equilibria in the TiO2-YO1.5-ZrO2 system , 2008 .

[11]  L. León-Reina,et al.  Structural characterization of bulk ZrTiO4 and its potential for thermal shock applications , 2012 .

[12]  A. Christy,et al.  The crystal structure of disordered (Zr,Ti)O2 solid solution including srilankite: evolution towards tetragonal ZrO2 with increasing Zr , 2005 .

[13]  David Dilner,et al.  Phase Equilibria in the ZrO2-MgO-MnOx System , 2016 .

[14]  K. Terabe,et al.  Metastable Phase Relationship in the ZrO2-YO1.5, ZrO2-TiO2 and YO1.5-TiO2 Systems , 1998 .

[15]  F. Aldinger,et al.  “The Zirconia−Hafnia System: DTA Measurements and Thermodynamic Calculations” , 2006 .

[16]  P. Davies,et al.  Structure of Commensurate and Incommensurate Ordered Phases in the System ZrTiO4–Zr5Ti7O24 , 1992 .

[17]  Pierre Bouvier,et al.  High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia , 2000 .

[18]  S. Hasegawa,et al.  Growth of Zirconium Titanate (ZrTiO4) Single Crystals from Molten Salts , 1968 .

[19]  Luca Lutterotti,et al.  Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction , 2010 .

[20]  R. Roth,et al.  Low-Temperature Phase Relationships in the System ZrO2-TiO2 , 1986 .

[21]  P. Svoboda,et al.  Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides , 2010 .

[22]  T. Noguchi,et al.  Phase changes in solids measured in a solar furnace ZrO2TiO2system , 1967 .

[23]  F. H. Brown,et al.  The Zirconia‐Titania System , 1954 .

[24]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[25]  O. Fabrichnaya,et al.  Heat capacity for the Eu2Zr2O7 and phase relations in the ZrO2–Eu2O3 system: Experimental studies and calculations , 2013 .

[26]  J. M. Barnes,et al.  Solubility of TiO2 in ZrO2 , 1986 .

[27]  R. Freer,et al.  The relationship between the microstructure and microwave dielectric properties of zirconium titanate ceramics , 1996, Journal of Materials Science.

[28]  A. Christy,et al.  Synthesis of zirconium titanate with an ordered M-fergusonite (beta) structure , 2007 .

[29]  T. Noguchi,et al.  Phase Changes in the ZrO 2 -TiO 2 System , 1968 .

[30]  M. Dondi,et al.  Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties , 2006 .

[31]  F. Parker Al2TiO5-ZrTiO4-ZrO2 Composites: A New Family of Low-Thermal-Expansion Ceramics , 1990 .

[32]  U. Troitzsch,et al.  High-PT study of solid solutions in the system ZrO 2 -TiO 2 : The stability of srilankite , 2004 .

[33]  Yoonho Kim,et al.  Order-disorder transition of tin-modified zirconium titanate , 1996 .

[34]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[35]  R. Mcgreevy,et al.  X-ray diffraction, neutron scattering and EXAFS spectroscopy of monoclinic zirconia: analysis by Rietveld refinement and reverse Monte Carlo simulations , 2002 .

[36]  A. Ono Solid Solutions in the System ZrO2-TiO2 , 1972 .

[37]  U. Troitzsch TiO2‐Doped Zirconia: Crystal Structure, Monoclinic‐Tetragonal Phase Transition, and the New Tetragonal Compound Zr3TiO8 , 2006 .

[38]  P. Bordet,et al.  Powder neutron diffraction study of ZrTiO4, Zr5Ti7O24, and FeNb2O6 , 1986 .

[39]  R. Newnham Crystal Structure of ZrTiO4 , 1967 .

[40]  R. Arróyave Thermodynamics and kinetics of ceramic/metal interfacial interactions , 2004 .

[41]  R. Freer,et al.  The microstructure and microwave dielectric properties of zirconium titanate ceramics in the solid solution system ZrTiO4–Zr5Ti7O24 , 1997 .

[42]  R. S. Roth,et al.  Phase equilibrium relations in the systems Lime-Titania and Zirconia-Titania , 1954 .

[43]  S. Yamaguchi,et al.  Electronic Transport Properties of ZrTiO4 at High Temperature , 1994 .

[44]  O. Fabrichnaya,et al.  Thermodynamic description of the ZrO2-TiO2-Al2O3 system based on experimental data , 2017 .

[45]  Ho-Gi Kim,et al.  Effect of pressure and electric field on the phase transition in zirconium titanate , 1997 .

[46]  W. Gonschorek X-ray charge density study of rutile (TiO2) , 1982 .

[47]  Effect of minor titanium additions on the phase composition of TRIP steel/magnesia partially stabilised zirconia composite materials , 2015 .

[48]  A. Christy,et al.  Synthesis of Ordered Zirconium Titanate (Zr,Ti)2O4 from the Oxides Using Fluxes , 2005 .

[49]  F. Aldinger,et al.  Thermodynamic Assessment of the PZT System , 2006 .

[50]  O. Fabrichnaya,et al.  Experimental Investigation and Thermodynamic Modeling of the ZrO2–MgO System , 2013 .

[51]  Stefan Martin,et al.  Reinforcing Mechanism of Mg‐PSZ Particles in Highly‐Alloyed TRIP Steel , 2011 .

[52]  R. Schmid-Fetzer,et al.  Thermodynamic description of the Ti–O system , 2015 .