Code properties from holographic geometries

Almheiri, Dong, and Harlow [arXiv:1411.7041] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes which admit a holographic interpretation. We introduce a new quantity called `price', which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit `uberholography', meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales small compared to the AdS curvature radius.

[1]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[2]  Omar Fawzi,et al.  Universal recovery map for approximate Markov chains , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  F. Nogueira,et al.  The gravity dual of a density matrix , 2012, 1204.1330.

[4]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[5]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[6]  David Poulin,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2010, Quantum Cryptography and Computing.

[7]  T. Wassmer 6 , 1900, EXILE.

[8]  Matthew Headrick,et al.  Entanglement Renyi entropies in holographic theories , 2010, 1006.0047.

[9]  Isaac H. Kim,et al.  Entanglement renormalization, quantum error correction, and bulk causality , 2016, Journal of High Energy Physics.

[10]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[11]  S. J. Suh,et al.  The gravity duals of modular Hamiltonians , 2014, 1412.8465.

[12]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[13]  J. Maldacena,et al.  Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[14]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[15]  Aron C. Wall Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy , 2012, 1211.3494.

[16]  M. Raamsdonk,et al.  Building up spacetime with quantum entanglement , 2010, 1005.3035.

[17]  Cédric Bény,et al.  Conditions for the Approximate Correction of Algebras , 2009, TCQ.

[18]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[19]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[20]  David W. Kribs,et al.  Quantum error correction of observables , 2007, 0705.1574.

[21]  Xi Dong Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories. , 2016, Physical review letters.

[22]  D. Petz SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .

[23]  Xi Dong,et al.  Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality. , 2016, Physical review letters.

[24]  M. Nielsen,et al.  Algebraic and information-theoretic conditions for operator quantum error correction , 2005, quant-ph/0506069.

[25]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[26]  R. Bousso A covariant entropy conjecture , 1999, hep-th/9905177.

[27]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[28]  Xi Dong The gravity dual of Rényi entropy , 2016, Nature Communications.

[29]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[30]  Xi Dong,et al.  Linearity of holographic entanglement entropy , 2016, 1606.04537.

[31]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[32]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[33]  W. Marsden I and J , 2012 .

[34]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[35]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[36]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[37]  Achim Kempf,et al.  Generalization of quantum error correction via the Heisenberg picture. , 2006, Physical review letters.

[38]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[39]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[40]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.