The parametric synchronization scheme of chaotic system

Abstract By constructing the parametric error vectors between drive system and response system, a parametric synchronization scheme of chaotic system which is different from all other schemes is proposed in this paper. Controller of the scheme is designed. The proposed scheme and controller not only realize the synchronization of the state vectors, but also synchronize the unknown response parameters to the given drive parameter as time goes to infinity. That is to say, to achieving the synchronization, we have no need to know the parameters of response system when the parameters of drive system are given. The scheme and controller are successfully applied to the Rossler and the hyperchaotic Rossler systems, corresponding numerical simulations are presented to show the validity of the proposed synchronization scheme and effectiveness of the controller.

[1]  Tiegang Gao,et al.  Adaptive synchronization of a new hyperchaotic system with uncertain parameters , 2007 .

[2]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.

[3]  M. M. El-Dessoky,et al.  Adaptive synchronization of a hyperchaotic system with uncertain parameter , 2006 .

[4]  Ju H. Park Synchronization of Genesio chaotic system via backstepping approach , 2006 .

[5]  O. Rössler An equation for continuous chaos , 1976 .

[6]  Q. Jia Adaptive control and synchronization of a new hyperchaotic system with unknown parameters , 2007 .

[7]  R. Femat,et al.  On the chaos synchronization phenomena , 1999 .

[8]  Ju H. Park Adaptive synchronization of hyperchaotic Chen system with uncertain parameters , 2005 .

[9]  Ju H. Park On synchronization of unified chaotic systems via nonlinear Control , 2005 .

[10]  Parlitz,et al.  Phase synchronization of coupled ginzburg-landau equations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[12]  R. Robinson,et al.  An Introduction to Dynamical Systems: Continuous and Discrete , 2004 .

[13]  Jian Huang,et al.  Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters , 2008 .

[14]  E. M. Shahverdiev,et al.  Lag synchronization in time-delayed systems , 2002 .

[15]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[16]  Chun-Mei Yang,et al.  Impulsive control of Lorenz system , 1997 .

[17]  Shihua Chen,et al.  Adaptive control for anti-synchronization of Chua's chaotic system , 2005 .

[18]  B. R. Nana Nbendjo,et al.  Active control of extended Van der Pol equation , 2007 .

[19]  O. Rössler An equation for hyperchaos , 1979 .

[20]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[21]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[22]  Rongwei Guo A simple adaptive controller for chaos and hyperchaos synchronization , 2008 .

[23]  Jinhu Lu,et al.  Controlling Chen's chaotic attractor using backstepping design based on parameters identification , 2001 .

[24]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[25]  Antonina Pirrotta,et al.  Active controlled structural systems under delta-correlated random excitation: Linear and nonlinear case , 2006 .