Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools

The nonlinear Fourier transform (NFT), a powerful tool in soliton theory and exactly solvable models, is a method for solving integrable partial differential equations governing wave propagation in certain nonlinear media. The NFT decorrelates signal degrees-of-freedom in such models, in much the same way that the Fourier transform does for linear systems. In this three-part series of papers, this observation is exploited for data transmission over integrable channels, such as optical fibers, where pulse propagation is governed by the nonlinear Schrödinger equation. In this transmission scheme, which can be viewed as a nonlinear analogue of orthogonal frequency-division multiplexing commonly used in linear channels, information is encoded in the nonlinear frequencies and their spectral amplitudes. Unlike most other fiber-optic transmission schemes, this technique deals with both dispersion and nonlinearity directly and unconditionally without the need for dispersion or nonlinearity compensation methods. This paper explains the mathematical tools that underlie the method.

[1]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[2]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[3]  Yi Cai,et al.  Spectral efficiency limits of pre-filtered modulation formats. , 2010, Optics express.

[4]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[5]  Stefan M. Moser Duality-based bounds on channel capacity , 2005 .

[6]  A. S. Fokas,et al.  A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[8]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation , 2013, IEEE Transactions on Information Theory.

[9]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[10]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[11]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[12]  M. O'Sullivan,et al.  Electronic precompensation of optical nonlinearity , 2006, IEEE Photonics Technology Letters.

[13]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[14]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[15]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods , 2012, IEEE Transactions on Information Theory.

[16]  A. Hasegawa,et al.  Eigenvalue communication , 1993 .

[17]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[18]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[19]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[20]  Athanassios S. Fokas,et al.  Complex Variables: Contents , 2003 .

[21]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[22]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[23]  Ali H. Sayed,et al.  Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links - eScholarship , 2007 .

[24]  R. Dodd,et al.  Review: L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons , 1988 .

[25]  Andrew C. Singer,et al.  Signal processing and communication with solitons , 1996 .

[26]  M. Karlsson,et al.  Signal Statistics in Fiber-Optical Channels With Polarization Multiplexing and Self-Phase Modulation , 2011, Journal of Lightwave Technology.

[27]  Gerhard Kramer,et al.  Spectral efficiency of coded phase-shift keying for fiber-optic communication , 2003 .

[28]  J. Kahn,et al.  Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation , 2008, Journal of Lightwave Technology.

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[30]  N. Lord Complex variables: introduction and applications (2nd edn), by M. J. Ablowitz and A. S. Fokas. Pp. 647. £18.95. 2003. ISBN 0 521 53429 1 (Cambridge University Press). , 2004 .

[31]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[32]  Stephen Semmes,et al.  Nonlinear Fourier analysis , 1989 .

[33]  J. K. Shaw,et al.  On the Eigenvalues of Zakharov-Shabat Systems , 2003, SIAM J. Math. Anal..

[34]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[35]  W. Hackbusch Singular Integral Equations , 1995 .

[36]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[37]  S. Lang Complex Analysis , 1977 .