Acclimation by diverse phytoplankton species determines oceanic carbon to nitrogen ratios

[1]  O. Kerimoglu,et al.  FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth , 2021, Geoscientific Model Development.

[2]  S. Smith,et al.  Enhancing Ocean Biogeochemical Models With Phytoplankton Variable Composition , 2021, Frontiers in Marine Science.

[3]  Y. Yamanaka,et al.  Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean , 2021, Communications Earth & Environment.

[4]  M. Pahlow,et al.  Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration , 2020 .

[5]  S. Sharoni,et al.  Nutrient ratios in marine particulate organic matter are predicted by the population structure of well-adapted phytoplankton , 2020, Science Advances.

[6]  K. Matsumoto,et al.  Linkages Between Dynamic Phytoplankton C:N:P and the Ocean Carbon Cycle Under Climate Change , 2020, Oceanography.

[7]  M. Pahlow,et al.  Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour , 2020 .

[8]  K. Matsumoto,et al.  A meta-analysis on environmental drivers of marine phytoplankton C : N : P , 2019, Biogeosciences.

[9]  A. Martiny,et al.  Ecological Stoichiometry of Ocean Plankton. , 2018, Annual review of marine science.

[10]  B. Ward Assessing an efficient “Instant Acclimation” approximation of dynamic phytoplankton stoichiometry , 2017 .

[11]  M. Pahlow,et al.  Flexible phytoplankton functional type (FlexPFT) model: Size-scaling of traits and optimal growth , 2016 .

[12]  J. A. Bonachela,et al.  Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus , 2016, The ISME Journal.

[13]  Corinne Le Quéré,et al.  Drivers and uncertainties of future global marine primary production in marine ecosystem models , 2015 .

[14]  Juan A. Bonachela,et al.  Resource allocation by the marine cyanobacterium Synechococcus WH8102 in response to different nutrient supply ratios , 2015 .

[15]  G. Woodward,et al.  Temperature and the biogeography of algal stoichiometry , 2015 .

[16]  C. Godwin,et al.  Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry , 2015, The ISME Journal.

[17]  J. Cullen,et al.  Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? , 2015, Annual review of marine science.

[18]  M. Lomas,et al.  Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean , 2014, Scientific Data.

[19]  M. Lomas,et al.  Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean , 2013 .

[20]  M. Pahlow,et al.  Optimality-based model of phytoplankton growth and diazotrophy , 2013 .

[21]  M. Pahlow,et al.  Optimal allocation backs Droop’s cell-quota model , 2013 .

[22]  Kai W. Wirtz,et al.  Optimality‐based modeling of planktonic organisms , 2011 .

[23]  Hideyuki Nakano,et al.  Simulating present climate of the global ocean–ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector , 2011 .

[24]  Andreas Oschlies,et al.  Chain model of phytoplankton P, N and light colimitation , 2009 .

[25]  J. Galloway,et al.  An Earth-system perspective of the global nitrogen cycle , 2008, Nature.

[26]  Yasuhiro Yamanaka,et al.  NEMURO—a lower trophic level model for the North Pacific marine ecosystem , 2007 .

[27]  Y. Yamanaka,et al.  Quantitative comparison of photoacclimation models for marine phytoplankton , 2007 .

[28]  M. Vanni,et al.  Interactive effects of light and nutrients on phytoplankton stoichiometry , 2006, Oecologia.

[29]  Michele Scardi,et al.  A comparison of global estimates of marine primary production from ocean color , 2006 .

[30]  G. Hays,et al.  Climate change and marine plankton. , 2005, Trends in ecology & evolution.

[31]  M. Pahlow Linking chlorophyll-nutrient dynamics to the Redfield N:C ratio with a model of optimal phytoplankton growth , 2005 .

[32]  S. Levin,et al.  Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton , 2004, Nature.

[33]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[34]  P. Falkowski Rationalizing elemental ratios in unicellular algae , 2000 .

[35]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[36]  M. R. Droop,et al.  25 Years of Algal Growth Kinetics A Personal View , 1983 .

[37]  J. C. Goldman,et al.  Growth rate influence on the chemical composition of phytoplankton in oceanic waters , 1979, Nature.

[38]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .