Riccati-Ermakov systems and explicit solutions for variable coefficient reaction-diffusion equations

[1]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[2]  J. Escorcia,et al.  Blow-up results and soliton solutions for a generalized variable coefficient nonlinear Schrödinger equation , 2016, Appl. Math. Comput..

[3]  C. Sard'on Lie systems, Lie symmetries and reciprocal transformations , 2015, 1508.00726.

[4]  Maria Luz Gandarias,et al.  Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinates , 2015, Commun. Nonlinear Sci. Numer. Simul..

[5]  Kuai Xu,et al.  Partial differential equations with Robin boundary condition in online social networks , 2015 .

[6]  C. Koutschan,et al.  Fundamental laser modes in paraxial optics: from computer algebra and simulations to experimental observation , 2014, 1407.0730.

[7]  J. Grabowski,et al.  Dirac-Lie systems and Schwarzian equations , 2013, 1305.6276.

[8]  A. Mahalov,et al.  Spiral laser beams in inhomogeneous media. , 2013, Optics letters.

[9]  Maria Luz Gandarias,et al.  Nonlinear self-adjointness and conservation laws for a generalized Fisher equation , 2013, Commun. Nonlinear Sci. Numer. Simul..

[10]  Oktay K. Pashaev,et al.  Exact solutions of forced Burgers equations with time variable coefficients , 2013, Commun. Nonlinear Sci. Numer. Simul..

[11]  A. Mahalov,et al.  Solution of paraxial wave equation for inhomogeneous media in linear and quadratic approximation , 2013 .

[12]  S. Suslov,et al.  Reconstructing the Schrödinger groups , 2013 .

[13]  S. Suslov,et al.  On a hidden symmetry of quantum harmonic oscillators , 2011, 1112.2586.

[14]  S. Suslov,et al.  Exact wave functions for generalized harmonic oscillators , 2011, 1102.5119.

[15]  E. Suazo,et al.  The Riccati System and a Diffusion-Type Equation , 2011, 1102.4630.

[16]  J. Mallow,et al.  Supersymmetric Quantum Mechanics: An Introduction , 2010 .

[17]  Nikolai A. Kudryashov,et al.  Meromorphic solutions of nonlinear ordinary differential equations , 2010, 1201.0126.

[18]  Cesar Augusto Gómez Sierra,et al.  Special symmetries to standard Riccati equations and applications , 2010, Appl. Math. Comput..

[19]  Alvaro H. Salas,et al.  Symbolic computation of solutions for a forced Burgers equation , 2010, Appl. Math. Comput..

[20]  Vicenç Méndez,et al.  RandomWalks and Mesoscopic Reaction–Transport Equations , 2010 .

[21]  M. Bruzón,et al.  Nonclassical potential symmetries for the Burgers equation , 2009 .

[22]  Zhaosheng Feng,et al.  Traveling wave behavior for a generalized fisher equation , 2008 .

[23]  E. Suazo,et al.  The Riccati Differential Equation and a Diffusion-Type Equation , 2008, 0807.4349.

[24]  R. S. Zola,et al.  Exact solutions for a forced Burgers equation with a linear external force , 2008 .

[25]  E. Suazo,et al.  Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields , 2008, 0801.3246.

[26]  H. Segur,et al.  The pole dynamics of rational solutions of the viscous Burgers equation , 2007 .

[27]  A. Schulze-Halberg New exact solutions of the non-homogeneous Burgers equation in (1+1) dimensions , 2007 .

[28]  Tao Xu,et al.  Symbolic computation on generalized Hopf–Cole transformation for a forced Burgers model with variable coefficients from fluid dynamics , 2007 .

[29]  Akira Hasegawa,et al.  Nonautonomous solitons in external potentials. , 2007, Physical review letters.

[30]  R. Friedrich,et al.  A note on the forced Burgers equation , 2005, nlin/0509006.

[31]  Eric Moreau,et al.  Connection between the Burgers equation with an elastic forcing term and a stochastic process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  C. Sophocleous Transformation properties of a variable-coefficient Burgers equation , 2004 .

[33]  A. Polyanin,et al.  Handbook of Nonlinear Partial Differential Equations , 2003 .

[34]  G. Bluman,et al.  Symmetry and Integration Methods for Differential Equations , 2002 .

[35]  S. Motamen,et al.  Nonlinear diffusion equation , 2002 .

[36]  Stathis Filippas,et al.  Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  J. Matos Unfocused blow up solutions of semilinear parabolic equations , 1999 .

[38]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[39]  J. Matos Convergence of blow-up solutions of nonlinear heat equations in the supercritical case , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  L. Debnath Nonlinear Partial Differential Equations for Scientists and Engineers , 1997 .

[41]  P. Sionóid,et al.  The generalized Burgers and Zabolotskaya-Khokhlov equations , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[42]  M. Herrero,et al.  Explosion de solutions d'équations paraboliques semilinéaires supercritiques , 1994 .

[43]  Elizabeth L. Mansfield,et al.  Symmetry reductions and exact solutions of a class of nonlinear heat equations , 1993, solv-int/9306002.

[44]  Robert V. Kohn,et al.  Refined asymptotics for the blowup of ut –Δu = up , 1992 .

[45]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[46]  A. Orłowski,et al.  Solitons and shock waves under random external noise , 1989 .

[47]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[48]  Yoshikazu Giga,et al.  Nondegeneracy of blowup for semilinear heat equations , 1989 .

[49]  J. Tyson Reaction-diffusion equations and their applications to biology , 1987 .

[50]  N. Britton Reaction-diffusion equations and their applications to biology. , 1989 .

[51]  L. Peletier,et al.  A very singular solution of the heat equation with absorption , 1986 .

[52]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[53]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[54]  L. Peletier,et al.  Singular solutions of the heat equation with absorption , 1985 .

[55]  Yoshikazu Giga,et al.  Characterizing Blow-up Using Similarity Variables , 1985 .

[56]  L. Véron,et al.  Large time behaviour of the solutions of a semilinear parabolic equation in RN , 1984 .

[57]  J. Meinhardt,et al.  Symmetries and differential equations , 1981 .

[58]  J. Scott The long time asymptotics of solutions to the generalized Burgers equation , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[59]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[60]  Mark J. Ablowitz,et al.  Explicit solutions of Fisher's equation for a special wave speed , 1979 .

[61]  M. E. Marhic,et al.  Oscillating Hermite-Gaussian wave functions of the harmonic oscillator , 1978 .

[62]  Hiroshi Matano,et al.  Convergence of solutions of one-dimensional semilinear parabolic equations , 1978 .

[63]  F. Calogero Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related «solvable» many-body problems , 1978 .

[64]  D. V. Choodnovsky,et al.  Pole expansions of nonlinear partial differential equations , 1977 .

[65]  J. Sakai Nonlinear magnetosonic waves propagating perpendicular to a magnetic neutral sheet , 1973 .

[66]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[67]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[68]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[69]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[70]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .