Numerical Bifurcation Analysis of Ecosystems in a Spatially Homogeneous Environment

The dynamics of single populations up to ecosystems, are often described by one or a set of non-linear ordinary differential equations. In this paper we review the use of bifurcation theory to analyse these non-linear dynamical systems. Bifurcation analysis gives regimes in the parameter space with quantitatively different asymptotic dynamic behaviour of the system. In small-scale systems the underlying models for the populations and their interaction are simple Lotka-Volterra models or more elaborated models with more biological detail. The latter ones are more difficult to analyse, especially when the number of populations is large. Therefore for large-scale systems the Lotka-Volterra equations are still popular despite the limited realism. Various approaches are discussed in which the different time-scale of ecological and evolutionary biological processes are considered together.

[1]  U. Dieckmann,et al.  The Dynamical Theory of Coevolution : A Derivation from Stochastic Ecological Processes , 1996 .

[2]  A. Agrawal COMMUNITY GENETICS: NEW INSIGHTS INTO COMMUNITY ECOLOGY BY INTEGRATING POPULATION GENETICS1 , 2003 .

[3]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[4]  Sebastiaan A.L.M. Kooijman,et al.  DYNAMIC ENERGY BUDGET REPRESENTATIONS OF STOICHIOMETRIC CONSTRAINTS ON POPULATION DYNAMICS , 2004 .

[5]  P. Yodzis The Indeterminacy of Ecological Interactions as Perceived Through Perturbation Experiments , 1988 .

[6]  John Pastor,et al.  Dynamics of nutrient cycling and food webs , 1992 .

[7]  U. Dieckmann,et al.  Evolutionary dynamics of predator-prey systems: an ecological perspective , 1996, Journal of mathematical biology.

[8]  H. W. Hunt,et al.  Modelling the effects of loss of soil biodiversity on ecosystem function , 2002 .

[9]  Martina Morris,et al.  A clarification of the φ mixing model , 1994 .

[10]  Michio Kondoh,et al.  Response to Comment on "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability" , 2003, Science.

[11]  Ranjit Kumar Upadhyay,et al.  Multiple attractors and crisis route to chaos in a model food-chain , 2003 .

[12]  Y. Kuznetsov,et al.  Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps: physics , 1993 .

[13]  P. Abrams Dynamics and Interactions in Food Webs with Adaptive Foragers , 1996 .

[14]  J. E. Cohen,et al.  Global stability, local stability and permanence in model food webs. , 2001, Journal of theoretical biology.

[15]  Sebastiaan A.L.M. Kooijman,et al.  How light and nutrients affect life in a closed bottle. , 2000 .

[16]  Peter A Abrams,et al.  The Adaptive Dynamics of Consumer Choice , 1999, The American Naturalist.

[17]  L. Slobodkin,et al.  Community Structure, Population Control, and Competition , 1960, The American Naturalist.

[18]  Sebastiaan A.L.M. Kooijman,et al.  Omnivory and food web dynamics , 2003 .

[19]  Robert W. Sterner,et al.  THE ENIGMA OF FOOD CHAIN LENGTH: ABSENCE OF THEORETICAL EVIDENCE FOR DYNAMIC CONSTRAINTS , 1997 .

[20]  Odo Diekmann,et al.  A beginners guide to adaptive dynamics , 2002 .

[21]  M. A. Aziz-Alaoui,et al.  Analysis of the dynamics of a realistic ecological model , 2002 .

[22]  J. Yorke,et al.  Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics , 1987, Science.

[23]  B W Kooi,et al.  Numerical bifurcation analysis of a tri-trophic food web with omnivory. , 2002, Mathematical biosciences.

[24]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[25]  W. Post,et al.  Community assembly and food web stability , 1983 .

[26]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[27]  B. Drossel,et al.  The influence of predator--prey population dynamics on the long-term evolution of food web structure. , 2000, Journal of theoretical biology.

[28]  Donald L. DeAngelis,et al.  Inducible defences and the paradox of enrichment , 2004 .

[29]  U. Dieckmann,et al.  Evolutionary Optimisation Models and Matrix Games in the Unified Perspective of Adaptive Dynamics , 2002 .

[30]  H. F. Nijhout,et al.  Stability in Real Food Webs: Weak Links in Long Loops , 2002 .

[31]  B W Kooi,et al.  Resistance of a food chain to invasion by a top predator. , 1999, Mathematical biosciences.

[32]  Alan Hastings What Equilibrium Behavior of Lotka-Volterra Models Does Not Tell Us About Food Webs , 1996 .

[33]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[34]  J. Grover Resource Competition , 1997, Population and Community Biology Series.

[35]  Paul M. Magwene,et al.  The Naturalist in a World of Genomics , 2003, The American Naturalist.

[36]  Anje-Margriet Neutel,et al.  Stability in Real Food Webs: Weak Links in Long Loops , 2002, Science.

[37]  C. Grebogi Chaos, Strange Attractors, and Fractal Basin Boundaries , 1989 .

[38]  É. Kisdi,et al.  Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree , 2004, Evolutionary Ecology.

[39]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[40]  Julie L. Lockwood,et al.  Assembling Ecological Communities in Time and Space , 1997 .

[41]  B. Jenkins,et al.  Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats , 1992 .

[42]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic Energy and Mass Budgets in Biological Systems , 2000 .

[43]  B W Kooi,et al.  Food chain dynamics in the chemostat. , 1998, Mathematical biosciences.

[44]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[45]  B W Kooi,et al.  Multiple attractors and boundary crises in a tri-trophic food chain. , 2001, Mathematical biosciences.

[46]  Richard Law,et al.  On models for assembling ecological communities , 1996 .

[47]  Mats Gyllenberg,et al.  Continuous versus discrete single species population models with adjustable reproductive strategies , 1997 .

[48]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[49]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[50]  Sebastiaan A.L.M. Kooijman,et al.  Invading species can stabilize simple trophic systems , 2000 .

[51]  Franz J. Weissing,et al.  Oscillations and chaos generated by competition for interactively essential resources , 2002, Ecological Research.

[52]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[53]  Charles C. Elton Animal Ecology , 1927, Nature.

[54]  P. Yodzis,et al.  Introduction to Theoretical Ecology , 1989 .

[55]  Richard Law,et al.  PERMANENCE AND THE ASSEMBLY OF ECOLOGICAL COMMUNITIES , 1996 .

[56]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[57]  Christian Wissel,et al.  Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion , 1997, Oecologia.

[58]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[59]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[60]  Hiroyuki Matsuda,et al.  Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level communities , 2005, Evolutionary Ecology.

[61]  J. Lawton,et al.  Number of trophic levels in ecological communities , 1977, Nature.

[62]  John Guckenheimer,et al.  Dstool: Computer assisted exploration of dynamical systems , 1992 .

[63]  W. Gurney,et al.  Endogenous metabolism and the stability of microbial prey–predator systems , 1983, Biotechnology and bioengineering.

[64]  L. Luckinbill The Effects of Space and Enrichment on a Predator‐Prey System , 1974 .

[65]  S. Rinaldi,et al.  Food chains in the chemostat: Relationships between mean yield and complex dynamics , 1998 .

[66]  Bob W. Kooi,et al.  Aggregation methods in food chains with nutrient recycling , 2002 .

[67]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[68]  M Gyllenberg,et al.  Invasion dynamics and attractor inheritance , 2002, Journal of mathematical biology.

[69]  Bob W. Kooi,et al.  Bifurcations in ecosystem models and their biological interpretation , 2001 .

[70]  R. Nisbet,et al.  How should we define 'fitness' for general ecological scenarios? , 1992, Trends in ecology & evolution.

[71]  M. A. Aziz-Alaoui,et al.  Study of a Leslie–Gower-type tritrophic population model , 2002 .

[72]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[73]  É. Kisdi,et al.  Dynamics of Adaptation and Evolutionary Branching , 1997 .

[74]  Stuart L. Pimm,et al.  The determinants of food chain lengths , 1987 .

[75]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[76]  James A. Drake,et al.  The mechanics of community assembly and succession , 1990 .

[77]  Celso Grebogi,et al.  Basin boundary metamorphoses: Changes in accessible boundary orbits☆ , 1987 .

[78]  J. Lancaster,et al.  Assembly rules within a contingent ecology , 1999 .

[79]  G. E. Hutchinson,et al.  Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? , 1959, The American Naturalist.

[80]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[81]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[82]  P Hogeweg,et al.  Interactive instruction on population interactions. , 1978, Computers in biology and medicine.

[83]  Propagation of permanent perturbations in food chains and food webs , 1998 .

[84]  Michio Kondoh,et al.  Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability , 2003, Science.

[85]  Charles M. Newman,et al.  Community Food Webs , 1990 .

[86]  J. Metz,et al.  Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction , 1995 .

[87]  Bob W. Kooi,et al.  The dynamics of a tri-trophic food chain with two-component populations from a biochemical perspective , 2002 .

[88]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[89]  Paul Waltman,et al.  The Theory of the Chemostat , 1995 .

[90]  S. Ellner,et al.  Predator–prey cycles in an aquatic microcosm: testing hypotheses of mechanism , 2002 .

[91]  Bob W. Kooi,et al.  On the use of the logistic equation in models of food chains , 1998 .

[92]  Michael E. Gilpin,et al.  Spiral Chaos in a Predator-Prey Model , 1979, The American Naturalist.

[93]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[94]  A. Neutel,et al.  Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems , 1995, Science.

[95]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[96]  Bob W. Kooi,et al.  Chaotic behaviour of a predator-prey system , 2003 .