Species-Level Phylogeny and Polyploid Relationships in Hordeum (Poaceae) Inferred by Next-Generation Sequencing and In Silico Cloning of Multiple Nuclear Loci

Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data.

[1]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome. , 2022 .

[2]  G. Petersen,et al.  When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae) , 2011, Cladistics : the international journal of the Willi Hennig Society.

[3]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[4]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[5]  A. Rambaut TRACER v1.5 , 2009 .

[6]  F. Blattner Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. , 2004, Molecular phylogenetics and evolution.

[7]  Liang Liu,et al.  Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. , 2014, Systematic biology.

[8]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[9]  J. W. Pendleton,et al.  Surveys of Gene Families Using Polymerase Chain Reaction: PCR Selection and PCR Drift , 1994 .

[10]  D. Roelofs,et al.  Molecular evidence for an extinct parent of the tetraploid species Microseris acuminata and M. campestris (Asteraceae, Lactuceae) , 1997, Molecular ecology.

[11]  Y. van de Peer,et al.  Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform1[W] , 2011, Plant Physiology.

[12]  F. Blattner,et al.  Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species (Poaceae: Triticeae) , 2008 .

[13]  Vincent Ranwez,et al.  Disentangling homeologous contigs in allo-tetraploid assembly: application to durum wheat , 2013, BMC Bioinformatics.

[14]  B. Kilian,et al.  Evolutionary History of Wild Barley (Hordeum vulgare subsp. spontaneum) Analyzed Using Multilocus Sequence Data and Paleodistribution Modeling , 2014, Genome biology and evolution.

[15]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[16]  T. Sang Utility of Low-Copy Nuclear Gene Sequences in Plant Phylogenetics , 2002, Critical reviews in biochemistry and molecular biology.

[17]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[18]  Axel Himmelbach,et al.  Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond , 2013, The Plant journal : for cell and molecular biology.

[19]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[20]  J. Rabassa,et al.  Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review , 2011 .

[21]  K. Popper Logik der Forschung : zur erkenntnistheorie der modernen naturwissenschaft , 1936 .

[22]  D. Rödder,et al.  Population demography influences climatic niche evolution: evidence from diploid American Hordeum species (Poaceae) , 2010, Molecular ecology.

[23]  K. Shimizu,et al.  Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. , 2006, Molecular phylogenetics and evolution.

[24]  Bengt Oxelman,et al.  From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae) , 2014, Systematic biology.

[25]  Joshua S. Williams,et al.  Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex , 2013, Molecular ecology.

[26]  B. Larget,et al.  Bayesian estimation of concordance among gene trees. , 2006, Molecular biology and evolution.

[27]  M. Nei,et al.  Relationships between gene trees and species trees. , 1988, Molecular biology and evolution.

[28]  N. Jouve,et al.  The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. , 2013, Annals of botany.

[29]  R. Bothmer,et al.  The ancestry of Hordeum depressum (Poaceae, Triticeae) , 1998 .

[30]  F. Blattner,et al.  Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. , 2010, Molecular phylogenetics and evolution.

[31]  M. Sanderson,et al.  Disentangling methodological and biological sources of gene tree discordance on Oryza (Poaceae) chromosome 3. , 2014, Systematic biology.

[32]  Noah A Rosenberg,et al.  Gene tree discordance, phylogenetic inference and the multispecies coalescent. , 2009, Trends in ecology & evolution.

[33]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[34]  F. Blattner Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). , 2006, The New phytologist.

[35]  Matthias Meyer,et al.  From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing , 2007, Nucleic acids research.

[36]  G. Petersen,et al.  Phylogenetic Analyses of the Diploid Species of Hordeum (Poaceae) and a Revised Classification of the Genus , 2009 .

[37]  Céline Scornavacca,et al.  Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae) , 2011, BMC Evolutionary Biology.

[38]  S. Edwards IS A NEW AND GENERAL THEORY OF MOLECULAR SYSTEMATICS EMERGING? , 2009, Evolution; international journal of organic evolution.

[39]  A. Meister,et al.  The considerable genome size variation of Hordeum species (poaceae) is linked to phylogeny, life form, ecology, and speciation rates. , 2004, Molecular biology and evolution.

[40]  Jianzhon Wu,et al.  Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers , 2009, Theoretical and Applied Genetics.

[41]  I. Linde-Laursen,et al.  An ecogeographical study of the genus Hordeum , 1992 .

[42]  E. Kellogg,et al.  Five Nuclear Loci Resolve the Polyploid History of Switchgrass (Panicum virgatum L.) and Relatives , 2012, PloS one.

[43]  F. Blattner,et al.  Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae) — niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia , 2007, Molecular ecology.

[44]  E. Martínez‐Meyer,et al.  Phylogeographic analyses and paleodistribution modeling indicate pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. , 2009, Molecular biology and evolution.

[45]  Manuel Spannagl,et al.  Ancient hybridizations among the ancestral genomes of bread wheat , 2014, Science.

[46]  T. Komatsuda,et al.  Molecular phylogeny of the genus Hordeum using three chloroplast DNA sequences. , 2002, Genome.

[47]  J. Doebley,et al.  CHLOROPLAST DNA VARIATION AND THE PHYLOGENY OF HORDEUM (POACEAE) , 1992 .

[48]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[49]  S. Taketa,et al.  Phylogeny of two tetraploid Hordeum species, H. secalinum and H. capense inferred from physical mapping of 5S and 18S-25S rDNA , 2009 .

[50]  C. Robin,et al.  A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses , 2011, BMC Biology.

[51]  D. Soltis,et al.  Molecular data and the dynamic nature of polyploidy , 1993 .

[52]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[53]  Ryan A. Rapp,et al.  Evolutionary genetics of genome merger and doubling in plants. , 2008, Annual review of genetics.

[54]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[55]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[56]  D. Soltis,et al.  RECURRENT FORMATION AND POLYPHYLY OF NORDIC POLYPLOIDS IN DRABA (BRASSICACEAE) , 1992 .

[57]  J. Wendel,et al.  L. A. S. JOHNSON REVIEW No. 2 Use of nuclear genes for phylogeny reconstruction in plants , 2004 .

[58]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[59]  F. Blattner,et al.  Progenitor-Derivative Relationships of Hordeum Polyploids (Poaceae, Triticeae) Inferred from Sequences of TOPO6, a Nuclear Low-Copy Gene Region , 2012, PloS one.

[60]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[61]  J. Wendel,et al.  Ribosomal ITS sequences and plant phylogenetic inference. , 2003, Molecular phylogenetics and evolution.

[62]  K. Popper,et al.  Logik der Forschung , 1935 .

[63]  F. Blattner,et al.  Rapid Radiation in the Barley Genus Hordeum (Poaceae) During the Pleistocene in the Americas , 2010 .

[64]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[65]  C. Zeyl,et al.  Organelle inheritance in plants , 1994, Heredity.

[66]  L. F. Viccini,et al.  Next-generation sequencing and genome evolution in allopolyploids. , 2012, American journal of botany.

[67]  S. B. Hoot,et al.  Revealing unknown or extinct lineages within Isoetes (Isoetaceae) using DNA sequencesfrom hybrids. , 2004, American journal of botany.

[68]  H. Comes,et al.  The effect of Quaternary climatic changes on plant distribution and evolution , 1998 .

[69]  Julian Huxley,et al.  Evolution in Action , 1953 .

[70]  T. Rutten,et al.  The evolution of the hexaploid grass Zingeriakochii (Mez) Tzvel. (2n=12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. , 2010, Molecular phylogenetics and evolution.

[71]  B. Rannala,et al.  Phylogenetic methods come of age: testing hypotheses in an evolutionary context. , 1997, Science.

[72]  J. Yonemaru,et al.  PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes , 2007, BMC Genomics.

[73]  C. Ané,et al.  Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. , 2011, Systematic biology.

[74]  Bengt Oxelman,et al.  Inferring Species Networks from Gene Trees in High-Polyploid North American and Hawaiian Violets (Viola, Violaceae) , 2011, Systematic biology.

[75]  F. Blattner,et al.  A chloroplast genealogy of hordeum (poaceae): Long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. , 2006, Molecular biology and evolution.

[76]  D. Baum Concordance trees, concordance factors, and the exploration of reticulate genealogy , 2007 .

[77]  A. Drummond,et al.  Bayesian Inference of Species Trees from Multilocus Data , 2009, Molecular biology and evolution.

[78]  M. Ainouche,et al.  Diversity and evolution of the Hordeum murinum polyploid complex in Algeria. , 2011, Genome.

[79]  G. Petersen,et al.  On the Origin of the Tetraploid Species Hordeum capense and H. secalinum (Poaceae) , 2004 .

[80]  T. Sang,et al.  Origins of polyploids: an example from peonies ( Paeonia ) and a model for angiosperms , 2004 .

[81]  K. Takeda,et al.  Ancestry of American polyploid Hordeum species with the I genome inferred from 5S and 18S-25S rDNA. , 2005, Annals of botany.

[82]  T. Komatsuda,et al.  Evolutionary process of Hordeum brachyantherum 6x and related tetraploid species revealed by nuclear DNA sequences , 2009 .

[83]  F. Blattner Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae) , 2009 .

[84]  I. Linde-Laursen,et al.  Giemsa C‐banding in Asiatic taxa of Hordeum section Stenostachys with notes on chromosome morphology , 2009 .

[85]  W. Gilks,et al.  A novel algorithm and web-based tool for comparing two alternative phylogenetic trees , 2006, Bioinform..

[86]  K. Tanno,et al.  Analysis of DNA sequence polymorphism at the cMWG699 locus reveals phylogenetic relationships and allopolyploidy within Hordeum murinum subspecies. , 2010, Hereditas.

[87]  Forest Rohwer,et al.  TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets , 2010, BMC Bioinformatics.

[88]  A. Lemmon,et al.  Anchored hybrid enrichment for massively high-throughput phylogenomics. , 2012, Systematic biology.

[89]  L. Kubatko,et al.  Inconsistency of phylogenetic estimates from concatenated data under coalescence. , 2007, Systematic biology.

[90]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[91]  G. Hewitt Some genetic consequences of ice ages, and their role in divergence and speciation , 1996 .

[92]  D. Soltis,et al.  Polyploidy: recurrent formation and genome evolution. , 1999, Trends in ecology & evolution.

[93]  Colin N. Dewey,et al.  BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis , 2010, Bioinform..

[94]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[95]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[96]  U. Stenzel,et al.  Parallel tagged sequencing on the 454 platform , 2008, Nature Protocols.

[97]  G. Schneeweiss,et al.  Evolutionary Consequences, Constraints and Potential of Polyploidy in Plants , 2013, Cytogenetic and Genome Research.

[98]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.