Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells.

We report a device that monolithically integrates optically pumped (20-21) III-nitride quantum wells (QWs) with 560 nm emission on top of electrically injected QWs with 450 nm emission. The higher temperature growth of the blue light-emitting diode (LED) was performed first, which prevented thermal damage to the higher indium content InGaN of the optically pumped QWs. A tunnel junction (TJ) was incorporated between the optically pumped and electrically injected QWs; this TJ enabled current spreading in the buried LED. Metalorganic chemical vapor deposition enabled the growth of InGaN QWs with high radiative efficiency, while molecular beam epitaxy was leveraged to achieve activated buried p-type GaN and the TJ. This initial device exhibited dichromatic optically polarized emission with a polarization ratio of 0.28. Future improvements in spectral distribution should enable phosphor-free polarized white light emission.

[1]  S. Denbaars,et al.  Using band engineering to tailor the emission spectra of trichromatic semipolar InGaN light-emitting diodes for phosphor-free polarized white light emission , 2016 .

[2]  Shuji Nakamura,et al.  Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact. , 2016, Optics express.

[3]  S. Denbaars,et al.  Hybrid tunnel junction contacts to III–nitride light-emitting diodes , 2016 .

[4]  James S. Speck,et al.  Free electron concentration dependent sub-bandgap optical absorption characterization of bulk GaN crystals , 2015 .

[5]  S. Denbaars,et al.  Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells , 2015 .

[6]  S. Denbaars,et al.  Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact , 2015 .

[7]  N. Grandjean,et al.  InGaN based micro light emitting diodes featuring a buried GaN tunnel junction , 2015 .

[8]  J. Carlin,et al.  n+-GaN grown by ammonia molecular beam epitaxy: Application to regrown contacts , 2014 .

[9]  J. Speck,et al.  Valence band states and polarized optical emission from nonpolar and semipolar III–nitride quantum well optoelectronic devices , 2014 .

[10]  P. Burke,et al.  High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy , 2014 .

[11]  S. Denbaars,et al.  Stacking faults and interface roughening in semipolar (202¯1¯) single InGaN quantum wells for long wavelength emission , 2014 .

[12]  S. Denbaars,et al.  Semipolar (202̄1) Single-Quantum-Well Red Light-Emitting Diodes with a Low Forward Voltage , 2013 .

[13]  Qimin Yan,et al.  Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes , 2012 .

[14]  P. Burke,et al.  Effects of growth temperature on Mg-doped GaN grown by ammonia molecular beam epitaxy , 2012 .

[15]  James S. Speck,et al.  High-brightness polarized light-emitting diodes , 2012, Light: Science & Applications.

[16]  J. Bläsing,et al.  High Si and Ge n-type doping of GaN doping - Limits and impact on stress , 2012 .

[17]  S. Denbaars,et al.  High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy. , 2012, Optics express.

[18]  Shinichi Tanaka,et al.  High optical polarization ratio from semipolar (202¯1¯) blue-green InGaN/GaN light-emitting diodes , 2011 .

[19]  Tobias Meyer,et al.  Green high‐power light sources using InGaN multi‐quantum‐well structures for full conversion , 2011 .

[20]  S. Denbaars,et al.  High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (2021) GaN Substrates , 2010 .

[21]  Benjamin Damilano,et al.  Blue-green and white color tuning of monolithic light emitting diodes , 2010 .

[22]  Shuji Nakamura,et al.  Electroluminescence Characterization of (2021) InGaN/GaN Light Emitting Diodes with Various Wavelengths , 2010 .

[23]  K. Katayama,et al.  Optical Polarization Characteristics of InGaN Quantum Wells for Green Laser Diodes on Semi-Polar {2021} GaN Substrates , 2010 .

[24]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[25]  Motoaki Iwaya,et al.  Misfit Strain Relaxation by Stacking Fault Generation in InGaN Quantum Wells Grown on m-Plane GaN , 2009 .

[26]  S. Denbaars,et al.  Optical polarization of m ‐plane In‐GaN/GaN light‐emitting diodes characterized via confocal microscope , 2008 .

[27]  J. Brault,et al.  High doping level in Mg-doped GaN layers grown at low temperature , 2008 .

[28]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[29]  Ingrid Moerman,et al.  Formation of metallic in in InGaN/GaN multiquantum wells , 2004 .

[30]  A. P. Zhang,et al.  Schottky diode measurements of dry etch damage in n- and p-type GaN , 2000 .

[31]  A. P. Zhang,et al.  Plasma damage in p-GaN , 2000 .

[32]  F. Ren,et al.  Electrical effects of plasma damage in p-GaN , 1999 .

[33]  Jörg Neugebauer,et al.  Role of hydrogen in doping of GaN , 1996 .

[34]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[35]  S. Denbaars,et al.  Impact of p-GaN Thermal Damage and Barrier Composition on Semipolar Green Laser Diodes , 2014, IEEE Photonics Technology Letters.