An Improved S2 Control Chart for Cost and Efficiency Optimization

Virtually, detection of shifts in the dispersion parameter of the process is more valuable before monitoring the location parameter of the process. For the monitoring of the dispersion parameter, the <inline-formula> <tex-math notation="LaTeX">${S}^{2}$ </tex-math></inline-formula> chart is a common choice in the literature. In this paper, we proposed a modified <inline-formula> <tex-math notation="LaTeX">${S}^{2}$ </tex-math></inline-formula> chart based on modified successive sampling, which is cost effective relative to simple random sampling. The run length properties are used as comparative measure and the findings depict that all proposed schemes outperform the classical <inline-formula> <tex-math notation="LaTeX">${S}^{2}$ </tex-math></inline-formula> chart. Finally, the application of the proposed scheme is demonstrated using a real-life engineering process.

[1]  Chi-Hyuck Jun,et al.  An Attribute Control Chart Based on the Birnbaum-Saunders Distribution Using Repetitive Sampling , 2016, IEEE Access.

[2]  Athanasios C. Rakitzis,et al.  On the improvement of one-sided S control charts , 2011 .

[3]  Chi-Hyuck Jun,et al.  A New Attribute Control Chart Using Multiple Dependent State Repetitive Sampling , 2017, IEEE Access.

[4]  H. J. Huang,et al.  A synthetic control chart for monitoring process dispersion with sample standard deviation , 2005, Comput. Ind. Eng..

[5]  Muhammad Riaz,et al.  A Dispersion Control Chart , 2008, Commun. Stat. Simul. Comput..

[6]  H. V. L. Bathla,et al.  On Non-response in Sampling on Two Occasions , 2004 .

[7]  J. N. K. Rao,et al.  ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS , 1964 .

[8]  Bing Xing Wang,et al.  The Design of the ARL‐Unbiased S2 Chart When the In‐Control Variance Is Estimated , 2015, Qual. Reliab. Eng. Int..

[9]  Muhammad Riaz,et al.  Progressive Variance Control Charts for Monitoring Process Dispersion , 2014 .

[10]  Pei-Hsi Lee,et al.  Design of adaptive s control charts , 2013 .

[11]  Muhammad Riaz,et al.  Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters , 2011 .

[12]  Yi-Chia Chang,et al.  A Design of s Control Charts with a Combined Double Sampling and Variable Sampling Interval Scheme , 2012 .

[13]  Chi-Hyuck Jun,et al.  Designing of X-bar control charts based on process capability index using repetitive sampling , 2014 .

[14]  Muhammad Riaz,et al.  On Modified Successive Sampling Based Control Charting Schemes , 2016, Qual. Reliab. Eng. Int..

[15]  Michael B. C. Khoo,et al.  CONTROL CHART BASED ON DOUBLE SAMPLING , 2011 .

[16]  R. J. Jessen,et al.  Statistical investigation of a sample survey for obtaining farm facts , 1942 .

[17]  H. A. David Early sample measures of variability , 1998 .

[18]  Eugenio K. Epprecht,et al.  Estimating the Standard Deviation in Quality-Control Applications , 2010 .

[19]  Guoyi Zhang,et al.  Improved R and s control charts for monitoring the process variance , 2014 .

[20]  H. D. Patterson Sampling on Successive Occasions with Partial Replacement of Units , 1950 .

[21]  Pei-Hsi Lee Adaptive R charts with variable parameters , 2011, Comput. Stat. Data Anal..

[22]  Wayne A. Fuller Use of Auxiliary Information in Estimation , 2009 .

[23]  Gemai Chen,et al.  The run length distributions of the R, s and s2 control charts when is estimated , 1998 .

[24]  Muhammad Riaz,et al.  A mean deviation-based approach to monitor process variability , 2009 .

[25]  Michael B. C. Khoo,et al.  A Modified S Chart for the Process Variance , 2005 .

[26]  Saddam Akber Abbasi,et al.  On efficient median control charting , 2014 .

[27]  K. Govindaraju,et al.  On Statistical Design of the S 2 Control Chart , 2005 .