Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions

Abstract We present an implementation of an interface between the full-potential linearized augmented plane wave package Wien2k and the wannier90 code for the construction of maximally localized Wannier functions. The FORTRAN code and a documentation is made available and results are discussed for SrVO 3 , Sr 2 IrO 4 (including spin–orbit coupling), LaFeAsO, and FeSb 2 .

[1]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[2]  I. A. Nekrasov,et al.  Full orbital calculation scheme for materials with strongly correlated electrons , 2004, cond-mat/0407359.

[3]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[4]  E. Müller-Hartmann,et al.  Correlated fermions on a lattice in high dimensions , 1989 .

[5]  R. Lathe Phd by thesis , 1988, Nature.

[6]  S. Heinze,et al.  Maximally localized Wannier functions within the FLAPW formalism , 2008, 0806.3213.

[7]  Y. S. Lee,et al.  Electronic structures of layered perovskite Sr2MO4 (M=Ru, Rh, and IR) , 2006, cond-mat/0607026.

[8]  F. Aryasetiawan,et al.  Screened Coulomb interaction in the maximally localized Wannier basis , 2007, 0710.4013.

[9]  Ryotaro Arita,et al.  Ab initio Derivation of Low-Energy Model for Iron-Based Superconductors LaFeAsO and LaFePO(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2008, 0806.4750.

[10]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[11]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[12]  Molecular transport calculations with Wannier functions , 2005, cond-mat/0501238.

[13]  USA,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory , 1997, cond-mat/9704231.

[14]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[15]  Peter Blaha,et al.  Full-potential, linearized augmented plane wave programs for crystalline systems , 1990 .

[16]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[17]  Yoshinori Tokura,et al.  Multiferroics as Quantum Electromagnets , 2006, Science.

[18]  Hai-Ping Cheng,et al.  Proximity of antiferromagnetism and superconductivity in LaFeAsO 1-x F x : Effective Hamiltonian from ab initio studies , 2008, 0803.3236.

[19]  S. L. Bud'ko,et al.  Kondo insulator description of spin state transition in FeSb2 , 2005 .

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  Marco Buongiorno Nardelli,et al.  Ab initio transport properties of nanostructures from maximally localized Wannier functions , 2004 .

[22]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[23]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[24]  Takashi Miyake,et al.  Comparison of Ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe , 2009, 0911.3705.

[25]  F. Lechermann,et al.  Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials , 2006 .

[26]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[29]  A. Georges,et al.  Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO , 2009, 0906.3735.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  R. Car,et al.  Ab initio molecular dynamics with maximally localized Wannier functions , 2003 .

[32]  R. Arita,et al.  Phase diagram and gap anisotropy in iron-pnictide superconductors , 2009, 0912.1893.

[33]  Georg K. H. Madsen,et al.  Experimental and theoretical investigations of strongly correlated FeSb 2 − x Sn x , 2006 .

[34]  Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism , 2002, cond-mat/0203202.

[35]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[36]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[37]  Frank Steglich,et al.  Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 , 2007 .

[38]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[39]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[40]  V. Anisimov,et al.  Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  A. Georges,et al.  Bandwidth and Fermi surface of iron oxypnictides: Covalency and sensitivity to structural changes , 2008, 0806.3285.

[42]  R. Arita,et al.  Is Fermi-Surface Nesting the Origin of Superconductivity in Iron Pnictides?: A Fluctuation–Exchange-Approximation Study , 2009, 0909.1413.

[43]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[44]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[45]  A. I. Lichtenstein,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[46]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[47]  Orbital magnetization in periodic insulators. , 2005, Physical review letters.

[48]  Jaejun Yu,et al.  Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. , 2008, Physical review letters.