Multiresolution schemes for strongly degenerate parabolic equations in one space dimension

An adaptive finite volume method for one-dimensional strongly degenerate parabolic equations is presented. Using an explicit conservative numerical scheme with a third-order Runge-Kutta method for the time discretization, a third-order ENO interpolation for the convective term, and adding a conservative discretization for the diffusive term, we apply the multiresolution method combining two fundamental concepts: the switch between central interpolation or exact computing of numerical flux and a thresholded wavelet transform applied to cell averages of the solution to control the switch. Applications to mathematical models of sedimentation-consolidation processes and traffic flow with driver reaction, which involve different types of boundary conditions, illustrate the computational efficiency of the new method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 706–730, 2007

[1]  K. Karlsen,et al.  On some upwind difference schemes for the phenomenological sedimentation-consolidation model , 2001 .

[2]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[3]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[5]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[6]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[7]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[8]  A. Harten,et al.  Multiresolution Based on Weighted Averages of the Hat Function I: Linear Reconstruction Techniques , 1998 .

[9]  Steinar Evje,et al.  On Strongly Degenerate Convection–Diffusion Problems Modeling Sedimentation–Consolidation Processes , 2000 .

[10]  Raimund Bürger,et al.  ON A DIFFUSIVELY CORRECTED KINEMATIC-WAVE TRAFFIC FLOW MODEL WITH CHANGING ROAD SURFACE CONDITIONS , 2003 .

[11]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[12]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[13]  N. Risebro,et al.  CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR VISCOUS AND INVISCID CONSERVATION LAWS WITH ROUGH COEFFICIENTS , 2001 .

[14]  Francesc Aràndiga,et al.  Multiresolution Based on Weighted Averages of the Hat Function II: Nonlinear Reconstruction Techniques , 1998, SIAM J. Sci. Comput..

[15]  Leland Jameson,et al.  A Wavelet-Optimized, Very High Order Adaptive Grid and Order Numerical Method , 1998, SIAM J. Sci. Comput..

[16]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[17]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[18]  P. I. Richards Shock Waves on the Highway , 1956 .

[19]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[20]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[21]  Barna L. Bihari,et al.  Application of generalized wavelets: an adaptive multiresolution scheme , 1995 .

[22]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001 .

[23]  Mauricio Sepúlveda,et al.  A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes , 2005, Math. Comput..

[24]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[25]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[26]  P. Nelson Traveling-wave solutions of the diffusively corrected kinematic-wave model , 2002 .

[27]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[28]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.