Picasso : A Sparse Learning Library for High Dimensional Data Analysis in R and Python
暂无分享,去创建一个
[1] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[2] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[3] R. Tibshirani,et al. Strong rules for discarding predictors in lasso‐type problems , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[4] Tuo Zhao,et al. Pathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory , 2014, ArXiv.
[5] Lie Wang,et al. Calibrated multivariate regression with application to neural semantic basis discovery , 2013, J. Mach. Learn. Res..
[6] Cun-Hui Zhang,et al. Scaled sparse linear regression , 2011, 1104.4595.
[7] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[8] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[9] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[10] A. Belloni,et al. Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2011 .