Novel multiscale algorithms for molecular dynamics

In post-genomic computational biology and bioinformatics, long simulations of the dynamics of molecular systems, particularly biological molecules such as proteins and DNA, require advances in time stepping computational methods. The most severe problem of these algorithms is instability. The objective of this dissertation is to present original work in constructing multiscale multiple time stepping (MTS) algorithms for molecular dynamics (MD) that allow large time steps. First, through nonlinear stability analysis and numerical experiments, we reveal that MTS integrators such as Impulse suffer nonlinear overheating when Δt = T/3 or possibly Δ t = T/4 when constant-energy MD simulations are attempted, where Δt is the longest step size and T is the shortest period of the modes in the system. Second, we present Targeted MOLLY (TM), a new multiscale integrator for MD simulations. TM combines an efficient implementation of B-spline MOLLY exploiting analytical Hessians of energies and a self-consistent dissipative leapfrog integrator. Results show that TM allows very large time steps for slow forces (and thus multiscale) for the numerically challenging flexible TIPT3P water systems (Jorgensen, et al. J. Chem. Phys., vol 79, pp 926–935, 1983) while still computing the dynamical and structural properties accurately. Finally, we show yet another new MOLLY integrator, the Backward Euler (BE) MOLLY in which hydrogen bond forces can easily be included in the averaging and thus stability might be further improved.

[1]  Robert D. Skeel,et al.  Multiple grid methods for classical molecular dynamics , 2002, J. Comput. Chem..

[2]  O. Buneman,et al.  Time-Reversible Difference Procedures , 1967 .

[3]  Jesús A. Izaguirre,et al.  Long time step molecular dynamics using targeted Langevin stabilization , 2003, SAC '03.

[4]  Robert D. Skeel,et al.  Integration Schemes for Molecular Dynamics and Related Applications , 1999 .

[5]  T. E. Hull The numerical integration of ordinary differential equations , 1968, IFIP Congress.

[6]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[7]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[8]  A. Grzybowski,et al.  Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional system with periodicity in two directions , 2000 .

[9]  G. Martyna,et al.  Electrostatic calculations and multiple time scales in molecular dynamics simulation of flexible molecular systems , 1998 .

[10]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[11]  M. Tabor Chaos and Integrability in Nonlinear Dynamics: An Introduction , 1989 .

[12]  Heermann,et al.  Hybrid Monte Carlo method for condensed-matter systems. , 1992, Physical review. B, Condensed matter.

[13]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[14]  I. Pagonabarraga,et al.  Dissipative particle dynamics for interacting systems , 2001, cond-mat/0105075.

[15]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[16]  M. Levitt Protein folding by restrained energy minimization and molecular dynamics. , 1983, Journal of molecular biology.

[17]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[18]  Klaus Schulten,et al.  Elastic Rod Model of a DNA Loop in the Lac Operon , 1999 .

[19]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[20]  Jesús A. Izaguirre,et al.  Verlet-I/R-RESPA/Impulse is Limited by Nonlinear Instabilities , 2003, SIAM J. Sci. Comput..

[21]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[22]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[23]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[24]  Tamar Schlick,et al.  A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications , 1997, SIAM J. Sci. Comput..

[25]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[26]  R. Skeel,et al.  Langevin stabilization of molecular dynamics , 2001 .

[27]  Edward D Harder,et al.  Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems , 2001 .

[28]  Thierry Matthey,et al.  ProtoMol, an object-oriented framework for prototyping novel algorithms for molecular dynamics , 2004, TOMS.

[29]  T. Schlick,et al.  Masking Resonance Artifacts in Force-Splitting Methods for Biomolecular Simulations by Extrapolative Langevin Dynamics , 1999 .

[30]  J. Mccammon,et al.  Molecular Dynamics Simulations of a Polyalanine Octapeptide under Ewald Boundary Conditions: Influence of Artificial Periodicity on Peptide Conformation , 2000 .

[31]  Karttunen,et al.  Towards better integrators for dissipative particle dynamics simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[33]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[34]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[35]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.

[36]  Jesús A. Izaguirre,et al.  An impulse integrator for Langevin dynamics , 2002 .

[37]  C. Sagui,et al.  Multigrid methods for classical molecular dynamics simulations of biomolecules , 2001 .

[38]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[39]  C. Brooks Computer simulation of liquids , 1989 .

[40]  A. Ko,et al.  MDSimAid : AN AUTOMATIC RECOMMENDER FOR OPTIMIZATION OF FAST ELECTROSTATIC ALGORITHMS FOR MOLECULAR SIMULATIONS , 2002 .

[41]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[42]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[43]  T. Schlick,et al.  Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations , 2002 .

[44]  Jesús A. Izaguirre,et al.  The Five Femtosecond Time Step Barrier , 1999, Computational Molecular Dynamics.

[45]  R. R. Reynolds,et al.  Stability of a Numerical Solution of Differential Equations , 1959, JACM.

[46]  P. Bouř A cluster model of liquid water and its IR spectroscopic response , 2002 .

[47]  Michael R. Shirts,et al.  Mathematical analysis of coupled parallel simulations. , 2001, Physical review letters.

[48]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[49]  David Fincham,et al.  Optimisation of the Ewald Sum for Large Systems , 1994 .

[50]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[51]  Thierry Matthey,et al.  Framework Design, Parallelization and Force Computation in Molecular Dynamics , 2002 .

[52]  R. Skeel,et al.  Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .

[53]  Timothy R. Forester,et al.  On Multiple Time-step Algorithms and the Ewald Sum , 1994 .

[54]  T. Schlick,et al.  Special stability advantages of position-Verlet over velocity-Verlet in multiple-time step integration , 2001 .

[55]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[56]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[57]  B. Berne,et al.  A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems , 1995 .

[58]  T. Schlick,et al.  New splitting formulations for lattice summations , 2001 .

[59]  H. Dufner,et al.  Ewald summation versus direct summation of shifted‐force potentials for the calculation of electrostatic interactions in solids: A quantitative study , 1997 .

[60]  Robert D. Skeel,et al.  Symplectic Integration with Variable Stepsize , 1994 .

[61]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[62]  Jesús A. Izaguirre,et al.  Nonlinear instability in multiple time stepping molecular dynamics , 2003, SAC '03.

[63]  Angelo Vulpiani,et al.  On the effects of an uncertainty on the evolution law in dynamical systems , 1989 .

[64]  B. Berne,et al.  A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules , 1994 .

[65]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[66]  Thierry Matthey,et al.  ProtoMol: A Molecular Dynamics Framework with Incremental Parallelization , 2001, PPSC.

[67]  Robert D. Skeel,et al.  Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..

[68]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[69]  Todd R. Littell,et al.  Error Analysis of Symplectic Multiple Time Stepping , 1997 .

[70]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[71]  K. Schulten,et al.  Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics , 1997 .

[72]  Robert D. Skeel,et al.  Dangers of multiple time step methods , 1993 .

[73]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[74]  M Carlquist,et al.  Structure of the ligand‐binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist , 1999, The EMBO journal.

[75]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[76]  T. Schlick,et al.  Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics , 1998 .

[77]  Scott S. Hampton Linearly scalable hybrid Monte Carlo method for conformational sampling of large biomolecules , 2003 .

[78]  B. Berne,et al.  Novel methods of sampling phase space in the simulation of biological systems. , 1997, Current opinion in structural biology.

[79]  Thierry Matthey,et al.  Overcoming Instabilities in Verlet-I/r-RESPA with the Mollified Impulse Method , 2002 .

[80]  M. A. López-Marcos,et al.  Explicit Symplectic Integrators Using Hessian-Vector Products , 1997, SIAM J. Sci. Comput..

[81]  P. Procacci,et al.  Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm , 1996 .

[82]  Robert D. Skeel,et al.  Nonlinear Stability Analysis of Area-Preserving Integrators , 2000, SIAM J. Numer. Anal..

[83]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[84]  P. Kollman,et al.  Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. , 1998, Science.

[85]  T. Schlick,et al.  Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme , 1995 .

[86]  A. Kennedy,et al.  Acceptances and autocorrelations in hybrid Monte Carlo , 1991 .

[87]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[88]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[89]  R. Skeel,et al.  Cheap implicit symplectic integrators , 1997 .

[90]  B. Leimkuhler,et al.  A reversible averaging integrator for multiple time-scale dynamics , 2001 .