A concept space approach to semantic exchange

This dissertation work investigates the use of information technologies that clarify semantic meaning to help users elaborate their information needs by providing library-specific knowledge to the information seeking process. The research involved two interdependent semantic technologies: concept space consultation and library-specific, domain-specific, automatically generated concept spaces. The concept space consultation phase used spreading activation algorithms—branch-and-bound and Hopfield net algorithms—to explore knowledge sources in specific domains. This research demonstrated the comparable effectiveness of exploration of a library database using a man-made classification scheme and thesaurus as opposed to an automatically generated concept space. The results showed that the use of spreading activation algorithms identified more relevant concepts than the use of the manual browsing method. The concept space technique automatically identifies and extracts concept from a library collection while at the same time computing the strength of associations between concepts. This research demonstrated that the concept space technique was able to create human-recognizable concepts and their associations. In addition, the technique could be scaled to generate very large library-specific concept spaces for a very large underlying library collection. Moreover, the interdependent use of both semantic technologies creates a semantic medium for users and library-specific knowledge sources to exchange content with context—context in user information need and that in corporeal knowledge.

[1]  Brian C. O'Connor,et al.  Language and representation in information retrieval , 1993 .

[2]  D. Lindberg,et al.  The Unified Medical Language System , 1993, Methods of Information in Medicine.

[3]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.

[4]  S. Wrobel Concept Formation and Knowledge Revision , 1994, Springer US.

[5]  Alexa T. McCray,et al.  Concepts, Issues, and Standards. Current Status of the NLM's Umls Project: The Scope and Structure of the First Version of the UMLS Seoantic Network , 1990 .

[6]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[7]  Kenneth R. Boff,et al.  Knowledge maps for knowledge mining: application to R&D/technology management , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[8]  BRIAN VICKERY,et al.  Online Search Interface Design , 1993, J. Documentation.

[9]  Lauren B. Doyle,et al.  Indexing and abstracting by association , 1962 .

[10]  Marcia J. Bates,et al.  Where should the person stop and the information search interface start? , 1990, Inf. Process. Manag..

[11]  Hsinchun Chen,et al.  Automatic Thesaurus Generation for an Electronic Community System , 1995, J. Am. Soc. Inf. Sci..

[12]  Gerald Kowalski,et al.  Information Retrieval Systems: Theory and Implementation , 1997 .

[13]  Hsinchun Chen,et al.  Cognitive process as a basis for intelligent retrieval systems design , 1991, Inf. Process. Manag..

[14]  Andreas Abecker,et al.  Toward a Technology for Organizational Memories , 1998, IEEE Intell. Syst..

[15]  Peretz Shoval,et al.  Principles, procedures and rules in an expert system for information retrieval , 1985, Inf. Process. Manag..

[16]  Marcia J. Bates,et al.  Subject access in online catalogs: A design model , 1986 .

[17]  Geoffrey E. Hinton,et al.  A Distributed Connectionist Production System , 1988, Cogn. Sci..

[18]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[19]  A T McCray,et al.  The Representation of Meaning in the UMLS , 1995, Methods of Information in Medicine.

[20]  Barbara A. Norgard,et al.  An association-based method for automatic indexing with a controlled vocabulary , 1998 .

[21]  Marcia J. Bates,et al.  Indexing and Access for Digital Libraries and the Internet: Human, Database, and Domain Factors , 1998, J. Am. Soc. Inf. Sci..

[22]  Ira A. Noveck,et al.  Predicting propositional logic inferences in text comprehension , 1990 .

[23]  Thomas R. Gruber,et al.  A Translation Approach to Portable Ontologies , 1993 .

[24]  Christopher D. S. Moss,et al.  Intelligent databases , 1987 .

[25]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[26]  Jay F. Nunamaker,et al.  Automatic concept classification of text from electronic meetings , 1994, CACM.

[27]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[28]  Evelyne Tzoukermann,et al.  NLP for Term Variant Extraction: Synergy Between Morphology, Lexicon, and Syntax , 1999 .

[29]  Hsinchun Chen,et al.  A concept space approach to addressing the vocabulary problem in scientific information retrieval: an experiment on the worm community system , 1997 .

[30]  I. Monarch,et al.  CoalSORT: a knowledge-based interface to an information retrieval system. Final report , 1986 .

[31]  Susan T. Dumais,et al.  Statistical semantics: analysis of the potential performance of keyword information systems , 1984 .

[32]  Geoffrey E. Hinton,et al.  Mundane Reasoning by Parallel Constraint Satisfaction , 1990 .

[33]  Udi Manber,et al.  Fast text searching: allowing errors , 1992, CACM.

[34]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[35]  D. Lindberg,et al.  Building the Unified Medical Language System , 1989 .

[36]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[37]  James Allan,et al.  Automatic structuring and retrieval of large text files , 1994, CACM.

[38]  Vijay V. Raghavan,et al.  A critical investigation of recall and precision as measures of retrieval system performance , 1989, TOIS.

[39]  K. J. Lynch,et al.  International developments in the information technologies: the Mosaic group at the University of Arizona , 1990, Twenty-Third Annual Hawaii International Conference on System Sciences.

[40]  R. Brooke Lea Logical Inferences and Comprehension: How Mental-Logic and Text Processing Theories Need Each Other , 1998 .

[41]  Ramanathan V. Guha,et al.  Cyc: toward programs with common sense , 1990, CACM.

[42]  Mukesh Singhal,et al.  An Analysis of Performance and Cost Factors in Searching Large Text Databases Using Parallel Search Systems , 1994, Journal of the American Society for Information Science.

[43]  K. J. Lynch,et al.  Generating, integrating, and activating thesauri for concept-based document retrieval , 1993, IEEE Expert.

[44]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[45]  H. Edmund Stiles,et al.  The Association Factor in Information Retrieval , 1961, JACM.

[46]  Hsinchun Chen,et al.  Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms , 1995, J. Am. Soc. Inf. Sci..

[47]  Peter Willett,et al.  Effectiveness of query expansion in ranked-output document retrieval systems , 1992, J. Inf. Sci..

[48]  Carolyn L. Foss,et al.  Tools for reading and browsing hypertext , 1989, Inf. Process. Manag..

[49]  Lois Mai Chan,et al.  Inter-Indexer Consistency in Subject Cataloging. , 1989 .

[50]  William R. Hersh,et al.  Relevance and Retrieval Evaluation: Perspectives from Medicine , 1994, J. Am. Soc. Inf. Sci..

[51]  H. P. Luhn Key word‐in‐context index for technical literature (kwic index) , 1960 .

[52]  B. S. Manjunath,et al.  A Texture Thesaurus for Browsing Large Aerial Photographs , 1998, J. Am. Soc. Inf. Sci..

[53]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[54]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[55]  Kevin Knight,et al.  Connectionist ideas and algorithms , 1990, CACM.

[56]  Candy Schwartz,et al.  Web Search Engines , 1998, J. Am. Soc. Inf. Sci..

[57]  Yihong Gong,et al.  Lessons Learned from Building a Terabyte Digital Video Library , 1999, Computer.

[58]  David C. Blair,et al.  Indeterminacy in the subject access to documents , 1986, Inf. Process. Manag..

[59]  Robert N. Oddy,et al.  Pthomas: An adaptive information retrieval system on the connection machine , 1991, Inf. Process. Manag..

[60]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[61]  W. Bechtel,et al.  Connectionism and the Mind , 1991 .

[62]  Ramanathan V. Guha,et al.  Building large knowledge-based systems , 1989 .

[63]  Betsy L. Humphreys,et al.  The UMLS Knowledge Sources: Tools for Building Better User Interfaces. , 1990 .

[64]  K. J. Lynch,et al.  Explaining and Alleviating Information Management Indeterminism: A Knowledge-Based Framework , 1994, Inf. Process. Manag..

[65]  Hava T. Siegelmann,et al.  On the allocation of documents in multiprocessor information retrieval systems , 1991, SIGIR '91.

[66]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[67]  Hsinchun Chen,et al.  Collaborative systems: solving the vocabulary problem , 1994, Computer.

[68]  Gerard Salton,et al.  On the Specification of Term Values in Automatic Indexing , 1973 .

[69]  Patrick K. Simpson,et al.  Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementations , 1990 .

[70]  Gerard Salton,et al.  A theory of indexing , 1975, Regional conference series in applied mathematics.

[71]  Edie M. Rasmussen,et al.  Introduction: Parallel processing and information retrieval , 1991, Inf. Process. Manag..

[72]  Derek Wilton Langridge Subject Analysis: Principles and Procedures , 1989 .