Construction of Pt/Pt-Au doped chiral nanostructures using arginine and porphyrin assemblies as templates for enantioselective photocatalysis

[1]  G. Granucci,et al.  Protein control of photochemistry and transient intermediates in phytochromes , 2022, Nature Communications.

[2]  N. Kotov,et al.  Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles , 2022, Nature Catalysis.

[3]  P. Hamm,et al.  Vibrational couplings between protein and cofactor in bacterial phytochrome Agp1 revealed by 2D-IR spectroscopy , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Fenghua Li,et al.  Synthesis of Chiral Au Nanocrystals with Precise Homochiral Facets for Enantioselective Surface Chemistry. , 2022, Nano letters.

[5]  R. Vierstra,et al.  Plant phytochrome B is an asymmetric dimer with unique signalling potential , 2022, Nature.

[6]  Shuangquan Zang,et al.  Silver Cluster‐Porphyrin‐Assembled Materials as Advanced Bioprotective Materials for Combating Superbacteria , 2021, Advanced science.

[7]  N. Kotov,et al.  Emerging Trends in Chiral Inorganic Nanostructures , 2021, Israel Journal of Chemistry.

[8]  Xiyun Yan,et al.  Nanozymes Inspired by Natural Enzymes , 2021, Accounts of Materials Research.

[9]  N. Kotov,et al.  Self-Assembly of Earth-Abundant Supraparticles with Chiral Interstices for Enantioselective Photocatalysis , 2021 .

[10]  Bin Zhao,et al.  Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. , 2021, Angewandte Chemie.

[11]  Peiyang Gu,et al.  Surfactant-induced interfacial aggregation of porphyrins for structuring the color-tunable liquids. , 2020, Angewandte Chemie.

[12]  Z. Tang,et al.  Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities , 2020, Advanced materials.

[13]  Lisi Xie,et al.  Water-Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. , 2020, Angewandte Chemie.

[14]  W. Gärtner,et al.  Structural elements regulating the photochromicity in a cyanobacteriochrome , 2020, Proceedings of the National Academy of Sciences.

[15]  Jiashu Sun,et al.  Enantiomorphic Microvortex-Enabled Supramolecular Sensing of Racemic Amino Acids using Achiral Building Blocks. , 2019, Angewandte Chemie.

[16]  A. Winkler,et al.  Distinct chromophore–protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase , 2019, The Journal of Biological Chemistry.

[17]  R. Paolesse,et al.  The Assembly of Porphyrin Systems in Well-Defined Nanostructures: An Update , 2019, Molecules.

[18]  N. Kotov,et al.  Single- and multi-component chiral supraparticles as modular enantioselective catalysts , 2019, Nature Communications.

[19]  L. Qin,et al.  Cubic Cuprous Oxide-Based Nanocomposites for Photocatalytic Hydrogen Generation , 2019, ACS Applied Nano Materials.

[20]  E. Gazit,et al.  Photoactive properties of supramolecular assembled short peptides. , 2019, Chemical Society reviews.

[21]  Xiyun Yan,et al.  Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. , 2019, Accounts of chemical research.

[22]  Jianfang Wang,et al.  Site-Selective Growth of Crystalline Ceria with Oxygen Vacancies on Gold Nanocrystals for Near-Infrared Nitrogen Photofixation. , 2019, Journal of the American Chemical Society.

[23]  R. Purrello,et al.  Chiral Recognition of L- and D- Amino Acid by Porphyrin Supramolecular Aggregates , 2018, Molecules.

[24]  X. Qu,et al.  Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. , 2018, Angewandte Chemie.

[25]  M. Liu,et al.  Enantioselective Activity of Hemin in Supramolecular Gels Formed by Co-Assembly with a Chiral Gelator. , 2018, ChemPlusChem.

[26]  C. Gangemi,et al.  Chirality Enhancement of Porphyrin Supramolecular Assembly Driven by a Template Preorganization Effect. , 2018, Angewandte Chemie.

[27]  N. Kotov,et al.  Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles , 2018, Nature Chemistry.

[28]  B. Nilsson,et al.  Multicomponent peptide assemblies. , 2018, Chemical Society reviews.

[29]  Mark T. Stauffer Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences , 2016 .

[30]  D. Xue,et al.  Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction , 2016 .

[31]  G. Stucky,et al.  Anisotropic Growth of TiO2 onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction. , 2016, Journal of the American Chemical Society.

[32]  H. Möhwald,et al.  Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. , 2014, Angewandte Chemie.

[33]  S. Mann,et al.  Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly. , 2014, Angewandte Chemie.

[34]  T. Balaban Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. , 2005, Accounts of chemical research.

[35]  Jiangjiexing Wu,et al.  Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). , 2019, Chemical Society reviews.