Energetic cost of feedback control

Successful feedback control of small systems allows for the rectification of thermal fluctuations, converting them into useful energy; however, control itself requires work. This paper emphasizes the fact that the controller is a physical entity interacting with the feedback-controlled system. For a specifically designed class of controllers, reciprocal interactions become nonreciprocal due to large timescale separation, which considerably simplifies the situation. We introduce a minimally dissipative controller model, illustrating the findings using a simple example. We find that the work required to run the controller must at least compensate for the decrease in entropy due to the control operation.

[1]  David A. Sivak,et al.  Optimal control in stochastic thermodynamics , 2022, Journal of Physics Communications.

[2]  David A. Sivak,et al.  Energy and information flows in autonomous systems , 2022, Frontiers in Physics.

[3]  T. Vu,et al.  Thermodynamic Unification of Optimal Transport: Thermodynamic Uncertainty Relation, Minimum Dissipation, and Thermodynamic Speed Limits , 2022, Physical Review X.

[4]  Grant M. Rotskoff,et al.  Unified, Geometric Framework for Nonequilibrium Protocol Optimization. , 2022, Physical review letters.

[5]  David A. Sivak,et al.  Bayesian Information Engine that Optimally Exploits Noisy Measurements. , 2022, Physical review letters.

[6]  S. Still,et al.  Partially observable Szilárd engines , 2021, 2103.15803.

[7]  Grant M. Rotskoff,et al.  Probing the theoretical and computational limits of dissipative design. , 2021, The Journal of chemical physics.

[8]  S. Dattagupta Stochastic Thermodynamics , 2021, Resonance.

[9]  David A. Sivak,et al.  Maximal fluctuation exploitation in Gaussian information engines. , 2021, Physical review. E.

[10]  S. Ito,et al.  Geometrical aspects of entropy production in stochastic thermodynamics based on Wasserstein distance , 2021, Physical Review Research.

[11]  David A. Sivak,et al.  Maximizing power and velocity of an information engine , 2020, Proceedings of the National Academy of Sciences.

[12]  M. Esposito,et al.  Characterizing autonomous Maxwell demons. , 2020, Physical review. E.

[13]  S. Klapp,et al.  Irreversibility, heat and information flows induced by non-reciprocal interactions , 2020, New Journal of Physics.

[14]  S. Ciliberto Autonomous out-of-equilibrium Maxwell's demon for controlling the energy fluxes produced by thermal fluctuations. , 2020, Physical review. E.

[15]  J. Bechhoefer,et al.  Finite-Time Landauer Principle. , 2020, Physical review letters.

[16]  Tsvi Tlusty,et al.  Efficiency fluctuations and noise induced refrigerator-to-heater transition in information engines , 2019, Nature Communications.

[17]  Susanne Still,et al.  Thermodynamic Cost and Benefit of Memory. , 2017, Physical review letters.

[18]  F. Ritort,et al.  Large work extraction and the Landauer limit in a continuous Maxwell demon , 2019, Nature Physics.

[19]  G. Crooks,et al.  Marginal and conditional second laws of thermodynamics , 2016, EPL (Europhysics Letters).

[20]  Govind Paneru,et al.  Optimal tuning of a Brownian information engine operating in a nonequilibrium steady state , 2018, Physical Review E.

[21]  Y. Roichman,et al.  Experimental Realization of an Information Machine with Tunable Temporal Correlations. , 2018, Physical review letters.

[22]  J. Bechhoefer,et al.  Nanoscale virtual potentials using optical tweezers , 2018, Applied Physics Letters.

[23]  Patrick P. Potts,et al.  Detailed Fluctuation Relation for Arbitrary Measurement and Feedback Schemes. , 2018, Physical review letters.

[24]  E. Lutz,et al.  Information Gain and Loss for a Quantum Maxwell's Demon. , 2018, Physical review letters.

[25]  Tsvi Tlusty,et al.  Lossless Brownian Information Engine. , 2018, Physical review letters.

[26]  K. Funo,et al.  Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system , 2017, Nature Communications.

[27]  A. Engel,et al.  Stochastic thermodynamics of interacting degrees of freedom: Fluctuation theorems for detached path probabilities. , 2017, Physical Review E.

[28]  A. Fujiwara,et al.  Power generator driven by Maxwell's demon , 2017, Nature Communications.

[29]  Andre C. Barato,et al.  Thermodynamic cost of external control , 2017, 1704.03480.

[30]  Pierre Rouchon,et al.  Observing a quantum Maxwell demon at work , 2017, Proceedings of the National Academy of Sciences.

[31]  John Bechhoefer,et al.  Feedback traps for virtual potentials , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  T. Ouldridge,et al.  Fundamental Costs in the Production and Destruction of Persistent Polymer Copies. , 2016, Physical review letters.

[33]  I. S. Oliveira,et al.  Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System. , 2016, Physical review letters.

[34]  Marco Barbieri,et al.  Photonic Maxwell's Demon. , 2015, Physical review letters.

[35]  J. Koski,et al.  On-Chip Maxwell's Demon as an Information-Powered Refrigerator. , 2015, Physical review letters.

[36]  Regina K. Schmitt,et al.  Molecular motor efficiency is maximized in the presence of both power-stroke and rectification through feedback , 2015 .

[37]  J. Bechhoefer Hidden Markov models for stochastic thermodynamics , 2015, 1504.00293.

[38]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[39]  Chulan Kwon,et al.  Total cost of operating an information engine , 2015, 1501.03733.

[40]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[41]  Susanne Still,et al.  LOSSY IS LAZY , 2015 .

[42]  Henrik Sandberg,et al.  Second-law-like inequalities with information and their interpretations , 2014, 1409.5351.

[43]  J. Koski,et al.  Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. , 2014, Physical review letters.

[44]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[45]  Susanne Still,et al.  Information Bottleneck Approach to Predictive Inference , 2014, Entropy.

[46]  Jordan M. Horowitz,et al.  Thermodynamics with Continuous Information Flow , 2014, 1402.3276.

[47]  Henrik Sandberg,et al.  Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  A. C. Barato,et al.  Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation , 2014, 1402.0419.

[49]  Takahiro Sagawa,et al.  Role of mutual information in entropy production under information exchanges , 2013, 1307.6092.

[50]  Gernot Schaller,et al.  Thermodynamics of a physical model implementing a Maxwell demon. , 2012, Physical review letters.

[51]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[52]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[53]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[54]  Udo Seifert,et al.  Efficiency of a Brownian information machine , 2012, 1203.0184.

[55]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[56]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  David A. Sivak,et al.  Near-equilibrium measurements of nonequilibrium free energy. , 2009, Physical review letters.

[58]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[59]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[60]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[61]  Paolo Muratore-Ginanneschi,et al.  Optimal protocols and optimal transport in stochastic thermodynamics. , 2010, Physical review letters.

[62]  Dean J. Driebe,et al.  Generalization of the second law for a transition between nonequilibrium states , 2010 .

[63]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[64]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  M. Ponmurugan Generalized detailed fluctuation theorem under nonequilibrium feedback control. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[67]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[68]  M. Feito,et al.  Thermodynamics of feedback controlled systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Susanne Still,et al.  Information-theoretic approach to interactive learning , 2007, 0709.1948.

[70]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[71]  M. Raizen,et al.  Single-photon cooling at the limit of trap dynamics: Maxwell's demon near maximum efficiency , 2008, 0810.2239.

[72]  C. Sunstein,et al.  Irreversibility , 2008 .

[73]  B. Gaveau,et al.  Work and power production in non-equilibrium systems , 2008 .

[74]  D. Rugar,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[75]  Hong Qian,et al.  Fluctuation theorems for a molecular refrigerator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[77]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[78]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[79]  Ken Sekimoto,et al.  Langevin Equation and Thermodynamics , 1998 .

[80]  Bernard Gaveau,et al.  A general framework for non-equilibrium phenomena: the master equation and its formal consequences , 1997 .

[81]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[82]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[83]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[84]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[85]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..