Variational method for joint optical flow estimation and edge-aware image restoration

[1]  Baoxin Li,et al.  MSR-CNN: Applying motion salient region based descriptors for action recognition , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[2]  Remco C. Veltkamp,et al.  Adaptive guided image filter for warping in variational optical flow computation , 2016, Signal Process..

[3]  Sharib Ali,et al.  Illumination invariant optical flow using neighborhood descriptors , 2016, Comput. Vis. Image Underst..

[4]  Hongdong Li,et al.  Robust Multi-Body Feature Tracker: A Segmentation-Free Approach , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Remco C. Veltkamp,et al.  Weighted local intensity fusion method for variational optical flow estimation , 2016, Pattern Recognit..

[6]  Remco C. Veltkamp,et al.  Estimating accurate optical flow in the presence of motion blur , 2015, J. Electronic Imaging.

[7]  Patrick Bouthemy,et al.  Optical flow modeling and computation: A survey , 2015, Comput. Vis. Image Underst..

[8]  Remco C. Veltkamp,et al.  Improved Color Patch Similarity Measure Based Weighted Median Filter , 2014, ACCV.

[9]  Michael J. Black,et al.  Modeling Blurred Video with Layers , 2014, ECCV.

[10]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.

[11]  Michael J. Black,et al.  Optical Flow Estimation with Channel Constancy , 2014, ECCV.

[12]  Wencheng Wang,et al.  Edge-Aware Gradient Domain Optimization Framework for Image Filtering by Local Propagation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Remco C. Veltkamp,et al.  A combined post-filtering method to improve accuracy of variational optical flow estimation , 2014, Pattern Recognit..

[14]  Bärbel Mertsching,et al.  Illumination-Robust Optical Flow Using a Local Directional Pattern , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Vittorio Ferrari,et al.  Fast Object Segmentation in Unconstrained Video , 2013, 2013 IEEE International Conference on Computer Vision.

[16]  Konrad Schindler,et al.  An Evaluation of Data Costs for Optical Flow , 2013, GCPR.

[17]  Ying Wu,et al.  Large Displacement Optical Flow from Nearest Neighbor Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Sergiu Nedevschi,et al.  Motion Estimation Using the Correlation Transform , 2013, IEEE Transactions on Image Processing.

[19]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[20]  Cordelia Schmid,et al.  Dense Trajectories and Motion Boundary Descriptors for Action Recognition , 2013, International Journal of Computer Vision.

[21]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[22]  Lars Lau Raket Local smoothness for global optical flow , 2012, 2012 19th IEEE International Conference on Image Processing.

[23]  Li Zhang,et al.  Optical flow in the presence of spatially-varying motion blur , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Dirk A. Lorenz,et al.  Image Sequence Interpolation Based on Optical Flow, Segmentation, and Optimal Control , 2012, IEEE Transactions on Image Processing.

[25]  Wei Xie,et al.  Weighted root mean square approach to select the optimal smoothness parameter of the variational optical flow algorithms , 2012 .

[26]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[28]  Horst Bischof,et al.  Optical Flow Guided TV-L1 Video Interpolation and Restoration , 2011, EMMCVPR.

[29]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[30]  Deqing Sun,et al.  A Bayesian approach to adaptive video super resolution , 2011, CVPR 2011.

[31]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[34]  Edward H. Adelson,et al.  Human-assisted motion annotation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[36]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[37]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[38]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[39]  Alfred M. Bruckstein,et al.  Variational Approach for Joint Optic-Flow Computation and Video Restoration , 2005 .

[40]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[41]  S. Mota,et al.  MOTION DRIVEN SEGMENTATION SCHEME FOR CAR OVERTAKING SEQUENCES , 2004 .

[42]  S. Mota,et al.  Optical Flow for Cars Overtaking monitor 1 OPTICAL FLOW FOR CARS OVERTAKING MONITOR: THE REAR MIRROR BLIND SPOT PROBLEM , 2004 .

[43]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[44]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[45]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[48]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[49]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[50]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .