Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2.

The structures of the O-glycosyltransferase LanGT2 and the engineered, C-C bond-forming variant LanGT2S8Ac show how the replacement of a single loop can change the functionality of the enzyme. Crystal structures of the enzymes in complex with a nonhydrolyzable nucleotide-sugar analogue revealed that there is a conformational transition to create the binding sites for the aglycon substrate. This induced-fit transition was explored by molecular docking experiments with various aglycon substrates.

[1]  G. Phillips,et al.  Crystal structure of SsfS6, the putative C‐glycosyltransferase involved in SF2575 biosynthesis , 2013, Proteins.

[2]  Bernd Nidetzky,et al.  Ein Motiv im aktiven Zentrum fungiert als Schalter zwischen O‐ und C‐Glykosyltransferase‐Aktivität , 2012 .

[3]  B. Nidetzky,et al.  Switching between O- and C-glycosyltransferase through exchange of active-site motifs. , 2012, Angewandte Chemie.

[4]  G. Phillips,et al.  The structural biology of enzymes involved in natural product glycosylation. , 2012, Natural product reports.

[5]  Hung‐wen Liu,et al.  Structural studies of the spinosyn rhamnosyltransferase, SpnG. , 2012, Biochemistry.

[6]  D. Arya,et al.  Natural product DNA major groove binders. , 2012, Natural product reports.

[7]  J. Thorson,et al.  Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. , 2011, Natural product reports.

[8]  S. Günther,et al.  Rational design of an aryl-C-glycoside catalyst from a natural product O-glycosyltransferase. , 2011, Chemistry & biology.

[9]  G. Phillips,et al.  Structural characterization of CalO1: a putative orsellinic acid methyltransferase in the calicheamicin-biosynthetic pathway. , 2011, Acta crystallographica. Section D, Biological crystallography.

[10]  Kenji Watanabe,et al.  Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. , 2009, Journal of the American Chemical Society.

[11]  J. Sohng,et al.  Expanding substrate specificity of GT‐B fold glycosyltransferase via domain swapping and high‐throughput screening , 2009, Biotechnology and bioengineering.

[12]  B. Breit,et al.  Enantioselective synthesis of 2,6-dideoxy carbasugars based on a desymmetrizing hydroformylation-carbonyl ene cyclization process. , 2008, Chemical communications.

[13]  Gavin J. Williams,et al.  Probing the aglycon promiscuity of an engineered glycosyltransferase. , 2008, Angewandte Chemie.

[14]  G. Phillips,et al.  Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. , 2008, Chemistry & biology.

[15]  V. Křen,et al.  Sweet antibiotics - the role of glycosidic residues in antibiotic and antitumor activity and their randomization. , 2008, FEMS microbiology reviews.

[16]  A. Bechthold,et al.  Glycosyltransferases, important tools for drug design. , 2008, Current topics in medicinal chemistry.

[17]  Gavin J. Williams,et al.  Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. , 2007, Nature chemical biology.

[18]  G. Schulz,et al.  Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. , 2007, Journal of molecular biology.

[19]  J. Rohr,et al.  On the acceptor substrate of C-glycosyltransferase UrdGT2: three prejadomycin C-Glycosides from an engineered mutant of Streptomyces globisporus 1912 DeltalndE(urdGT2). , 2006, Angewandte Chemie.

[20]  J. Rohr,et al.  Über das Acceptorsubstrat der C‐Glycosyltransferase UrdGT2: drei Prejadomycin‐C‐glycoside aus einer konstruierten Mutante von Streptomyces globisporus 1912 ΔlndE(urdGT2) , 2006 .

[21]  A. Bechthold,et al.  LanV, a Bifunctional Enzyme: Aromatase and Ketoreductase during Landomycin A Biosynthesis , 2005, Chembiochem : a European journal of chemical biology.

[22]  J. Rohr,et al.  Deciphering the late steps in the biosynthesis of the anti‐tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase , 2005, Molecular microbiology.

[23]  B. Breit,et al.  Desymmetrizing Hydroformylation of Dialkenylcarbinols with the Aid of a Planar‐Chiral, Catalyst‐Directing Group , 2005 .

[24]  A. Bechthold,et al.  LanGT2 Catalyzes the First Glycosylation Step during Landomycin A Biosynthesis , 2005, Chembiochem : a European journal of chemical biology.

[25]  B. Breit,et al.  Practical Synthesis of Enantiomerically Pure 2-(Diphenylphosphanyl)ferro­cene Carboxylic Acid , 2005 .

[26]  B. Breit,et al.  Desymmetrizing hydroformylation with the aid of a planar chiral catalyst-directing group. , 2004, Journal of the American Chemical Society.

[27]  J. Thorson,et al.  The hedamycin locus implicates a novel aromatic PKS priming mechanism. , 2004, Chemistry & biology.

[28]  E. Coronado,et al.  Metallic conductivity down to 2 K in a polyoxometalate-containing radical salt of BEDO-TTF. , 2004, Angewandte Chemie.

[29]  Andreas Bechthold,et al.  Die Glycosyltransferase UrdGT2 katalysiert sowohl C‐ als auch O‐glycosidischen Zuckertransfer , 2004 .

[30]  J. Thorson,et al.  The glycosyltransferase UrdGT2 catalyzes both C- and O-glycosidic sugar transfers. , 2004, Angewandte Chemie.

[31]  Wei Lu,et al.  Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Trefzer,et al.  Biosynthetic Gene Cluster of Simocyclinone, a Natural Multihybrid Antibiotic , 2002, Antimicrobial Agents and Chemotherapy.

[33]  B. Wilkinson,et al.  Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. , 2002, Chemistry & biology.

[34]  J. Janin,et al.  High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding. , 2001, Journal of molecular biology.

[35]  S. Walker,et al.  E. Coli MurG: a paradigm for a superfamily of glycosyltransferases. , 2001, Current drug targets. Infectious disorders.

[36]  S. Reich,et al.  Novel Hybrid Tetracenomycins through Combinatorial Biosynthesis Using a Glycosyltransferase Encoded by the elm Genes in Cosmid 16F4 and Which Shows a Broad Sugar Substrate Specificity , 1998 .

[37]  C. Méndez,et al.  Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus , 1992, Journal of bacteriology.

[38]  J. Alfaro,et al.  Glycosyltransferase Structure and Function , 2006 .

[39]  B. Ramakrishnan,et al.  Substrate-induced conformational changes in glycosyltransferases. , 2005, Trends in biochemical sciences.

[40]  J. Rohr,et al.  Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tü2717. , 2000, Microbiology.

[41]  A. Weymouth-Wilson The role of carbohydrates in biologically active natural products. , 1997, Natural product reports.