Structure based prediction of subtype-selectivity for adenosine receptor antagonists

[1]  C. Simioni,et al.  Adenosine receptors and cancer. , 2011, Biochimica et biophysica acta.

[2]  Vsevolod Katritch,et al.  Ligand binding and subtype selectivity of the human A(2A) adenosine receptor: identification and characterization of essential amino acid residues. , 2010, The Journal of biological chemistry.

[3]  Brian K. Shoichet,et al.  Structure-Based Discovery of A2A Adenosine Receptor Ligands , 2010, Journal of medicinal chemistry.

[4]  Ruben Abagyan,et al.  Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. , 2010, Journal of medicinal chemistry.

[5]  Ruben Abagyan,et al.  GPCR 3D homology models for ligand screening: Lessons learned from blind predictions of adenosine A2a receptor complex , 2010, Proteins.

[6]  Thomas Borrmann,et al.  1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. , 2009, Journal of medicinal chemistry.

[7]  Randall C. Thompson,et al.  The RegEx trial: a randomized, double-blind, placebo- and active-controlled pilot study combining regadenoson, a selective A2A adenosine agonist, with low-level exercise, in patients undergoing myocardial perfusion imaging , 2009, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[8]  Ruben Abagyan,et al.  Identifying conformational changes of the β2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators , 2009, J. Comput. Aided Mol. Des..

[9]  A. Nadeem,et al.  Adenosine receptors and asthma. , 2009, Handbook of experimental pharmacology.

[10]  M. Blackburn,et al.  Adenosine receptors and inflammation. , 2009, Handbook of experimental pharmacology.

[11]  M. Morelli,et al.  Adenosine A2A receptors and Parkinson's disease. , 2009, Handbook of experimental pharmacology.

[12]  K. Jacobson Introduction to adenosine receptors as therapeutic targets. , 2009, Handbook of experimental pharmacology.

[13]  Bunyen Teng,et al.  Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. , 2009, Handbook of experimental pharmacology.

[14]  R. Abagyan,et al.  GPCR 3 D homology models for ligand screening : Lessons learned from blind predictions of adenosine A 2 a receptor complex , 2009 .

[15]  J. Headrick,et al.  Adenosine receptors and reperfusion injury of the heart. , 2009, Handbook of experimental pharmacology.

[16]  Ana M Sebastião,et al.  Adenosine receptors and the central nervous system. , 2009, Handbook of experimental pharmacology.

[17]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[18]  M. Loza,et al.  1,3-Dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines as potent A2B adenosine receptor antagonists: design, synthesis, structure-affinity and structure-selectivity relationships. , 2008, Bioorganic & medicinal chemistry.

[19]  F. Sanz,et al.  Corrigendum to “1-, 3- and 8-substituted-9-deazaxanthines as potent and selective antagonists at the human A2B adenosine receptor” [Bioorg. Med. Chem. 16 (2008) 2852–2869] , 2008 .

[20]  A. IJzerman,et al.  2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. , 2008, Journal of medicinal chemistry.

[21]  J. Zablocki,et al.  Progress in the discovery of selective, high affinity A2B adenosine receptor antagonists as clinical candidates , 2008, Purinergic Signalling.

[22]  G. Marucci,et al.  A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists. , 2008, Current pharmaceutical design.

[23]  F. Sanz,et al.  1-, 3- and 8-substituted-9-deazaxanthines as potent and selective antagonists at the human A2B adenosine receptor. , 2008, Bioorganic & medicinal chemistry.

[24]  A. IJzerman,et al.  A new generation of adenosine receptor antagonists: from di- to trisubstituted aminopyrimidines. , 2008, Bioorganic & medicinal chemistry.

[25]  Claudio N. Cavasotto,et al.  Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. , 2008, Journal of medicinal chemistry.

[26]  Helgi B. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[27]  K. Varani,et al.  Synthesis and biological evaluation of novel 1-deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]- 9H-purin-9-yl]-N-ethyl-beta-D-ribofuranuronamide derivatives as useful templates for the development of A2B adenosine receptor agonists. , 2007, Journal of medicinal chemistry.

[28]  K. Jacobson,et al.  Adenosine receptors as therapeutic targets , 2006, Nature Reviews Drug Discovery.

[29]  J. Tyndall,et al.  GPCR agonists and antagonists in the clinic. , 2005, Medicinal chemistry (Shariqah (United Arab Emirates)).

[30]  C. Müller,et al.  Adenosine receptor agonists: from basic medicinal chemistry to clinical development , 2003, Expert opinion on emerging drugs.

[31]  Ruben Abagyan,et al.  Comparative study of several algorithms for flexible ligand docking , 2003, J. Comput. Aided Mol. Des..

[32]  Kenneth A Jacobson,et al.  Modeling the adenosine receptors: comparison of the binding domains of A2A agonists and antagonists. , 2003, Journal of medicinal chemistry.

[33]  K. Varani,et al.  Recent developments in the field of A2A and A3 adenosine receptor antagonists. , 2003, European journal of medicinal chemistry.

[34]  C. Martini,et al.  1,2,4-Triazolo[4,3-a]quinoxalin-1-one: a versatile tool for the synthesis of potent and selective adenosine receptor antagonists. , 2000, Journal of medicinal chemistry.

[35]  Ruben Abagyan,et al.  Estimating Local Backbone Structural Deviation in Homology Models , 2000, Comput. Chem..

[36]  Ruben Abagyan,et al.  Prediction of the binding energy for small molecules, peptides and proteins , 1999, Journal of molecular recognition : JMR.

[37]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.

[38]  R Abagyan,et al.  Homology modeling with internal coordinate mechanics: Deformation zone mapping and improvements of models via conformational search , 1997, Proteins.

[39]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[40]  R Abagyan,et al.  Homology modeling by the ICM method , 1995, Proteins.

[41]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[42]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[43]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[44]  Burton S. Rosner,et al.  Neuropharmacology , 1958, Nature.