Benchmark Priors Revisited: On Adaptive Shrinkage and the Supermodel Effect in Bayesian Model Averaging

Default prior choices fixing Zellner's g are predominant in the Bayesian Model Averaging literature, but tend to concentrate posterior mass on a tiny set of models. The paper demonstrates this supermodel effect and proposes to address it by a hyper-g prior, whose data-dependent shrinkage adapts posterior model distributions to data quality. Analytically, existing work on the hyper-g-prior is complemented by posterior expressions essential to fully Bayesian analysis and to sound numerical implementation. A simulation experiment illustrates the implications for posterior inference. Furthermore, an application to determinants of economic growth identifies several covariates whose robustness differs considerably from previous results.

[1]  Dean P. Foster,et al.  The risk inflation criterion for multiple regression , 1994 .

[2]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[3]  B. D. Finetti,et al.  Bayesian inference and decision techniques : essays in honor of Bruno de Finetti , 1986 .

[4]  T. Fearn,et al.  Multivariate Bayesian variable selection and prediction , 1998 .

[5]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[6]  Edward I. George,et al.  Empirical Bayes vs. Fully Bayes Variable Selection , 2008 .

[7]  J. Cuaresma,et al.  Nonlinearities in cross-country growth regressions: A Bayesian Averaging of Thresholds (BAT) approach , 2007 .

[8]  Purushottam W. Laud,et al.  Predictive Model Selection , 1995 .

[9]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[10]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[11]  Marek Jarocinski,et al.  Determinants of Economic Growth : Will Data Tell ? † , 2008 .

[12]  Chris Papageorgiou,et al.  Rough and lonely road to prosperity: a reexamination of the sources of growth in Africa using Bayesian model averaging , 2008 .

[13]  Dean Phillips Foster,et al.  Calibration and Empirical Bayes Variable Selection , 1997 .

[14]  Bin Yu,et al.  Model Selection and the Principle of Minimum Description Length , 2001 .

[15]  X. Sala-i-Martin,et al.  Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach , 2000 .

[16]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[17]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[18]  M. Steel,et al.  Model uncertainty in cross-country growth regressions , 2001 .

[19]  A. Raftery,et al.  Default Priors and Predictive Performance in Bayesian Model Averaging, with Application to Growth Determinants , 2007 .

[20]  Jakob de Haan,et al.  Determinants of long-term growth: New results applying robust estimation and extreme bounds analysis , 2005 .

[21]  X. Sala-i-Martin,et al.  I Just Ran Four Million Regressions , 1997 .

[22]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[23]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .

[24]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[25]  X. Sala-i-Martin,et al.  I Just Ran Two Million Regressions , 1997 .

[26]  M. Steel,et al.  Mixtures of G-Priors for Bayesian Model Averaging with Economic Application , 2011 .

[27]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[28]  Gary Koop,et al.  Forecasting in Large Macroeconomic Panels Using Bayesian Model Averaging , 2003 .

[29]  Edward I. George,et al.  Bayesian Model Selection , 2006 .

[30]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[31]  Jana Eklund,et al.  Forecast Combination and Model Averaging Using Predictive Measures , 2005 .

[32]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[33]  Edward I. George,et al.  The Practical Implementation of Bayesian Model Selection , 2001 .

[34]  Mark F. J. Steel,et al.  On the effect of prior assumptions in Bayesian model averaging with applications to growth regression , 2009 .

[35]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.