Sharp minimax bounds for testing discrete monotone distributions

We consider a binary hypothesis testing problem of determining whether discrete data is drawn from some known distribution p versus from an unknown alternative that is ϵ-separated in the total variation norm. Under monotonicity constraints, we show that the global minimax testing radius for this problem scales as ϵ<sup>2</sup> ⊂ (√log d/n)<sup>4/5</sup>. This scaling is significantly different from classical scaling ϵ<sup>2</sup> ⊂ √d/n that holds without monotonicity constraints. We also prove some locally adaptive results on the testing radius over k-piece distributions, and other distributions p that have “simpler” structure.

[1]  Liam Paninski,et al.  Estimating entropy on m bins given fewer than m samples , 2004, IEEE Transactions on Information Theory.

[2]  Alon Orlitsky,et al.  Efficient compression of monotone and m-modal distributions , 2014, 2014 IEEE International Symposium on Information Theory.

[3]  Yu. I. Ingster Minimax Testing of Nonparametric Hypotheses on a Distribution Density in the $L_p$ Metrics , 1987 .

[4]  L. Birge,et al.  The Grenader Estimator: A Nonasymptotic Approach , 1989 .

[5]  Seshadhri Comandur,et al.  Testing Expansion in Bounded Degree Graphs , 2007, Electron. Colloquium Comput. Complex..

[6]  Yanjun Han,et al.  Minimax Estimation of Functionals of Discrete Distributions , 2014, IEEE Transactions on Information Theory.

[7]  L. Birge Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk , 1987 .

[8]  P. Groeneboom Estimating a monotone density , 1984 .

[9]  Ronitt Rubinfeld,et al.  Testing random variables for independence and identity , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[10]  Rocco A. Servedio,et al.  Testing monotone high-dimensional distributions , 2005, STOC '05.

[11]  J. Wellner,et al.  Estimation of a convex function: characterizations and asymptotic theory. , 2001 .

[12]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[13]  Ronitt Rubinfeld,et al.  Sublinear algorithms for testing monotone and unimodal distributions , 2004, STOC '04.

[14]  U. Grenander On the theory of mortality measurement , 1956 .

[15]  Gregory Valiant,et al.  An Automatic Inequality Prover and Instance Optimal Identity Testing , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[16]  Eric Cator,et al.  Adaptivity and optimality of the monotone least-squares estimator , 2008 .

[17]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .