The metabolic code.

[1]  H. Rasmussen,et al.  Immunofluorescent localization of cyclic AMP in toad urinary bladder: possible intercellular transfer. , 1975, Science.

[2]  H. Bourne,et al.  Selection of a variant lymphoma cell deficient in adenylate cyclase. , 1975, Science.

[3]  H. Dellweg,et al.  Cyclic AMP and Catabolite Repression in Yeasts , 1974 .

[4]  D. McMahon Chemical Messengers in Development: A Hypothesis , 1974, Science.

[5]  Michael G. Rossmann,et al.  Chemical and biological evolution of a nucleotide-binding protein , 1974, Nature.

[6]  R. Lazzarini,et al.  Altered metabolism of the guanosine tetraphosphate, ppGpp, in mutants of E. coli , 1974 .

[7]  H. Samuels,et al.  Thyroid hormone action in cell culture: domonstration of nuclear receptors in intact cells and isolated nuclei. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[8]  F. Lipmann,et al.  Nonribosomal synthesis of guanosine 5',3'-polyphosphates by the ribosomal wash of stringent Escherichia coli. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[9]  W. Haseltine,et al.  Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[10]  W. Gilbert,et al.  MSI and MSII made on Ribosome in Idling Step of Protein Synthesis , 1972, Nature.

[11]  E. Sutherland,et al.  Studies on the mechanism of hormone action. , 1972, Science.

[12]  M. Surks,et al.  Specific nuclear triiodothyronine binding sites in rat liver and kidney. , 1972, The Journal of clinical endocrinology and metabolism.

[13]  J. Sy,et al.  Content of cyclic 3',5'-adenosine monophosphate and adenylyl cyclase in yeast at various growth conditions. , 1972, Biochemistry.

[14]  J. Gallant,et al.  Amino acid control of messenger ribonucleic acid synthesis in Bacillus subtilis. , 1972, The Journal of biological chemistry.

[15]  G. S. Johnson,et al.  A mutation in a rous sarcoma virus gene that controls adenosine 3',5'-monophosphate levels and transformation. , 1972, The Journal of biological chemistry.

[16]  M. Nirenberg,et al.  Regulation of Adenosine 3′,5′-Cyclic Monophosphate Metabolism in Cultured Neuroblastoma Cells , 1971, Nature.

[17]  P. Furmanski,et al.  Expression of Differentiated Functions in Mouse Neuroblastoma mediated by Dibutyryl-cyclic Adenosine Monophosphate , 1971, Nature.

[18]  R. van Wijk,et al.  Cyclic 3′, 5′‐amp in Saccharomyces carlsbergensis under various conditions of catabolite repression , 1971, FEBS letters.

[19]  R. Lazzarini,et al.  The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. , 1971, The Journal of biological chemistry.

[20]  H. Rasmussen Cell Communication, Calcium Ion, and Cyclic Adenosine Monophosphate , 1970, Science.

[21]  T. Yokota,et al.  Requirement of Adenosine 3′, 5′-Cyclic Phosphate for Flagella Formation in Escherichia coli and Salmonella typhimurium , 1970, Journal of bacteriology.

[22]  I. Pastan,et al.  Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Beckwith,et al.  Mechanism of activation of catabolite-sensitive genes: a positive control system. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Varmus,et al.  Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate. , 1969, The Journal of biological chemistry.

[25]  R. Butcher,et al.  Involvement of adenosine 3',5'-monophosphate in release of ACTH. , 1969, The American journal of physiology.

[26]  I. Pastan,et al.  Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. , 1969, Biochemical and biophysical research communications.

[27]  D. Barkley Adenosine-3', 5'-Phosphate: Identification as Acrasin in a Species of Cellular Slime Mold , 1969, Science.

[28]  I. Pastan,et al.  Cyclic AMP regulates Catabolite and Transient Repression in E. coli , 1969, Nature.

[29]  T. M. Konijn Effect of Bacteria on Chemotaxis in the Cellular Slime Molds , 1969, Journal of Bacteriology.

[30]  M. Cashel The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. , 1969, The Journal of biological chemistry.

[31]  M. Cashel,et al.  The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. , 1969, The Journal of biological chemistry.

[32]  J. Gallant,et al.  The control of ribonucleic acid synthesis in Escherichia coli. II. Stringent control of energy metabolism. , 1969, The Journal of biological chemistry.

[33]  J. Wilber,et al.  Thyrotropin release in vitro: stimulation by cyclic 3',5'-Adenosine monophosphate. , 1969, Endocrinology.

[34]  J. Gallant,et al.  Two Compounds implicated in the Function of the RC Gene of Escherichia coli , 1969, Nature.

[35]  Y. Kaziro,et al.  Amino acid-dependent control of the transport of ?-methyl glucoside in , 1969 .

[36]  Y. Kaziro,et al.  On the nature of the control by RC gene in e. coli: amino acid-dependent control of lipid synthesis. , 1968, Biochemical and biophysical research communications.

[37]  G. Buznikov,et al.  The role of neurohumors in early embryogenesis. II. Acetylcholine and catecholamine content in developing embryos of sea urchin. , 1968, Journal of embryology and experimental morphology.

[38]  D. Nierlich Amino acid control over RNA synthesis: a re-evaluation. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Gallant,et al.  Control of RNA synthesis in Escherichia coli. I. Amino acid dependence of the synthesis of the substrates of RNA polymerase. , 1968, Journal of molecular biology.

[40]  J. Bonner,et al.  The acrasin activity of adenosine-3',5'-cyclic phosphate. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Neuhard,et al.  Regulation of nucleoside triphosphate pools in Escherichia coli. , 1967, Journal of molecular biology.

[42]  E. Sutherland,et al.  Adenyl Cyclase I. DISTRIBUTION, PREPARATION, AND PROPERTIES , 1962 .

[43]  G. Stent,et al.  A genetic locus for the regulation of ribonucleic acid synthesis. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Sutherland,et al.  Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. , 1958, The Journal of biological chemistry.

[45]  K. Prasad,et al.  Morphological and biochemical study in x-ray- and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. , 1972, Experimental cell research.

[46]  J. Bonner Aggregation and differentiation in the cellular slime molds. , 1971, Annual review of microbiology.