The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of

[1]  U. Onken,et al.  Influence of dissolved oxygen concentration and shear rate on the production of pullulan byAureobasidium pullulans , 1991, Biotechnology Letters.

[2]  H. Lawford,et al.  Effect of oxygen on the rate of β-1,3-glucan microbial exopolysaccharide production , 1989, Biotechnology Letters.

[3]  B. McNeil,et al.  Influence of impeller speed upon the pullulan fermentation , 1987, Biotechnology Letters.

[4]  U. Rau,et al.  Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing , 2005, Journal of Industrial Microbiology.

[5]  W. Deckwer,et al.  The production of gellan exopolysaccharide with Sphingomonas paucimobilis E2 (DSM 6314) , 1992, Applied Microbiology and Biotechnology.

[6]  A. Mulchandani,et al.  Oxygen requirement in pullulan fermentation , 1988, Applied Microbiology and Biotechnology.

[7]  S. Lee,et al.  Production and degradation of polyhydroxyalkanoates in waste environment , 1999 .

[8]  B. Schilling,et al.  Modeling and scale-up of the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205 , 1999 .

[9]  Amanullah,et al.  Agitator speed and dissolved oxygen effects in xanthan fermentations , 1998, Biotechnology and bioengineering.

[10]  J. Quagliano,et al.  Effect of aeration and carbon/nitrogen ratio on the molecular mass of the biodegradable polymer poly-β-hydroxybutyrate obtained from Azotobacter chroococcum 6B , 1997, Applied Microbiology and Biotechnology.

[11]  R. Seviour,et al.  Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture? , 1996, Applied Microbiology and Biotechnology.

[12]  B. Manna,et al.  Production and rheological characteristics of the microbial polysaccharide gellan , 1996 .

[13]  D. White,et al.  The genus Sphingomonas: physiology and ecology. , 1996, Current opinion in biotechnology.

[14]  I. Sutherland,et al.  Polysaccharide lyases from gellan-producing Sphingomonas spp. , 1996, Microbiology.

[15]  L. Choplin,et al.  Influence of fermentation hydrodynamics on gellan gum physico-chemical characteristics , 1996 .

[16]  I. Sutherland,et al.  Gellan lyases--novel polysaccharide lyases. , 1994, Microbiology.

[17]  L. Choplin,et al.  Effect of Mixing and Mass Transfer Conditions on Gellan Production by Auromonas elodea , 1994 .

[18]  K. Kubota,et al.  Light scattering study of gellan gum , 1993 .

[19]  S. Nair,et al.  Variation in poly‐β‐hydroxybutyrate synthesis in rhizobia reflects strain differentiation and temperature regulation , 1993 .

[20]  L. Harvey,et al.  Viscous Fermentation Products , 1993 .

[21]  A. W. Nienow,et al.  Agitators for mycelial fermentations , 1990 .

[22]  A. Schumpe,et al.  The influence of agitation rate on xanthan production by Xanthomonas campestris. , 1989, Biotechnology and bioengineering.

[23]  M. Dentini,et al.  Solution properties of exocellular microbial polysaccharides. 3. Light scattering from gellan and from the exocellular polysaccharide of Rhizobium trifolii (strain TA-1) in the ordered state , 1988 .

[24]  G. Brownsey,et al.  Some observations (or problems) on the characterization of gellan gum solutions , 1984 .

[25]  Tatsuo Kaneko,et al.  Agar-Like Polysaccharide Produced by a Pseudomonas Species: Production and Basic Properties , 1982, Applied and environmental microbiology.