Full-Stroke Static and Dynamic Analysis of High-Power Piezoelectric Actuators

A method for characterizing smart materials actuators in full-stroke static and low frequency dynamic regimes is presented. At first, static and dynamic linear models of the piezoelectric actuator response under electro-mechanical excitation are discussed. Then, a thorough static and dynamic experimental characterization on a typical large-stroke piezoelectric actuator is performed. The measurements indicated a strong dependence of the actuator stiffness and piezoelectric properties on the electromechanical loading. The comparison of the model with the measured behavior is performed and the material coefficients are tuned to locally match the observed nonlinear behavior. The comparison also allows the identification of key parameters of the induced-strain actuator model. These parameters are necessary for design optimization towards maximum mechanical energy output and minimum electrical power input. The paper provides useful basic data for the design of actuation systems incorporating active materials actuators.

[1]  H. Krueger,et al.  Stress Sensitivity of Piezoelectric Ceramics: Part 2. Heat Treatment , 1968 .

[2]  Craig A. Rogers,et al.  Coupled Electro-Mechanical Analysis of Adaptive Material Systems — Determination of the Actuator Power Consumption and System Energy Transfer , 1994 .

[3]  H. Krueger,et al.  Stress Sensitivity of Piezoelectric Ceramics: Part 1. Sensitivity to Compressive Stress Parallel to the Polar Axis , 1967 .

[4]  Don Berlincourt,et al.  Effects of High Static Stress on the Piezoelectric Properties of Transducer Materials , 1961 .

[5]  Zoubeida Ounaies,et al.  Electrical properties and power considerations of a piezoelectric actuator , 2000 .

[6]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[7]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[8]  Stephen C. Hwang,et al.  Finite element model of ferroelectric/ferroelastic polycrystals , 2000, Smart Structures.

[9]  Herbert Balke,et al.  On the local and average energy release in polarization switching phenomena , 2001 .

[10]  Friedrich K Straub,et al.  Design of a smart material actuator for rotor control , 1997 .

[11]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[12]  Craig A. Rogers,et al.  Dynamic transduction characterization of magnetostrictive actuators , 1996 .

[13]  Victor Giurgiutiu,et al.  Dynamic Power and Energy Capabilities of Commercially-Available Electro-Active Induced-Strain Actuators , 1996 .

[14]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[15]  R. Holland,et al.  Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients , 1967, IEEE Transactions on Sonics and Ultrasonics.

[16]  Seung Eek Eagle Park,et al.  Comparison of actuator properties for piezoelectric and electrostrictive materials , 2000, Smart Structures.

[17]  Christopher S. Lynch,et al.  NONLINEAR CONSTITUTIVE BEHAVIOR OF SOFT AND HARD PZT: EXPERIMENTS AND MODELING , 1999 .

[18]  A R McGowan,et al.  Piezoelectric power requirements for active vibration control , 1997, Smart Structures.

[19]  Kenji Uchino,et al.  Crystal Orientation Dependence of Piezoelectric Properties in Lead Zirconate Titanate: Theoretical Expectation for Thin Films , 1997 .

[20]  Gregory P. Carman,et al.  Electromechanical characterization of piezoelectric stack actuators , 1999, Smart Structures.

[21]  Inderjit Chopra,et al.  Development and validation of a refined piezostack-actuated trailing-edge flap actuator for a helicopter rotor , 1999, Smart Structures.

[22]  Daining Fang,et al.  Micromechanics simulation of ferroelectric polarization switching , 1997 .

[23]  F. Straub,et al.  Durability characterization of piezoelectric stack actuators under combined electro-mechanical loading , 2000 .

[24]  Victor Giurgiutiu,et al.  Power and Energy Characteristics of Solid-State Induced-Strain Actuators for Static and Dynamic Applications , 1997 .

[25]  Stephen C. Hwang,et al.  A finite element model of ferroelectric polycrystals , 1998 .

[26]  K. Uchino,et al.  Change of the weak-field properties of Pb(ZrTi)O_3 piezoceramics with compressive uniaxial stresses and its links to the effect of dopants on the stability of the polarizations in the materials , 1997 .

[27]  Friedrich K. Straub,et al.  Development of a piezoelectric actuator for trailing-edge flap control of rotor blades , 1999, Smart Structures.

[28]  Guomao Yang,et al.  Uniaxial stress dependence of the piezoelectric properties of lead zirconate titanate ceramics , 2000, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[29]  Nesbitt W. Hagood,et al.  Compression depolarization of PZT piezoelectric materials under high electromechanical driving levels , 2000, Smart Structures.