Preasymptotic Error Analysis of Higher Order FEM and CIP-FEM for Helmholtz Equation with High Wave Number

A preasymptotic error analysis of the finite element method (FEM) and some continuous interior penalty finite element method (CIP-FEM) for the Helmholtz equation in two and three dimensions is proposed. $H^1$- and $L^2$-error estimates with explicit dependence on the wave number $k$ are derived. In particular, it is shown that if $k^{2p+1}h^{2p}$ is sufficiently small, then the pollution errors of both methods in $H^1$-norm are bounded by $O(k^{2p+1}h^{2p})$, which coincides with the phase error of the FEM obtained by existent dispersion analyses on Cartesian grids, where $h$ is the mesh size, and $p$ is the order of the approximation space and is fixed. The CIP-FEM extends the classical one by adding more penalty terms on jumps of higher (up to $p$th order) normal derivatives in order to reduce efficiently the pollution errors of higher order methods. Numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the CIP-FEM in reducing the pollution effect.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[3]  Jim Douglas,et al.  APPROXIMATION OF SCALAR WAVES IN THE SPACE-FREQUENCY DOMAIN , 1994 .

[4]  Jie Shen,et al.  Analysis of a Spectral-Galerkin Approximation to the Helmholtz Equation in Exterior Domains , 2007, SIAM J. Numer. Anal..

[5]  P. Cummings,et al.  SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .

[6]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[7]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[10]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[11]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[12]  P. Pinsky,et al.  Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .

[13]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[14]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[15]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[16]  Bruno Després,et al.  Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .

[17]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[18]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[19]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[20]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[21]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[22]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[23]  Alexandre Ern,et al.  Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .

[24]  L. Thompson A review of finite-element methods for time-harmonic acoustics , 2006 .

[25]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[26]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[27]  Xiaobing Feng,et al.  Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations , 2013, J. Comput. Appl. Math..

[28]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[29]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: Wave propagation , 2011 .

[30]  Leszek Demkowicz,et al.  Wavenumber Explicit Analysis of a DPG Method for the Multidimensional Helmholtz Equation , 2011 .

[31]  Ivo Babuska,et al.  Finite Element Solution to the Helmholtz Equation with High Wave Number Part II : The hp-version of the FEM , 2022 .

[32]  Xuejun Xu,et al.  A Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation with High Wave Number , 2012, SIAM J. Numer. Anal..

[33]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[34]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[35]  Yu-Lin Chou Applications of Discrete Functional Analysis to the Finite Difference Method , 1991 .

[36]  Andrew M. Stuart,et al.  Discrete Gevrey regularity attractors and uppers–semicontinuity for a finite difference approximation to the Ginzburg–Landau equation , 1995 .

[37]  Jens Markus Melenk,et al.  General DG-Methods for Highly Indefinite Helmholtz Problems , 2013, J. Sci. Comput..

[38]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[39]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[40]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[41]  John C. Strikwerda,et al.  Interior Regularity Estimates for Elliptic Systems of Difference Equations , 1983 .

[42]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[43]  Isaac Harari,et al.  Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics , 1997 .

[44]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005 .

[45]  Peter Monk,et al.  Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation , 2011, J. Sci. Comput..

[46]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[47]  R. B. Kellogg,et al.  A scattering problem for the Helmholtz equation , 1979 .

[48]  U. Hetmaniuk Stability estimates for a class of Helmholtz problems , 2007 .

[49]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[50]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .