Embedding into l∞2 Is Easy, Embedding into l∞3 Is NP-Complete
暂无分享,去创建一个
[1] Michel Deza,et al. Metric subspaces of L[1] , 1982 .
[2] Monika Henzinger,et al. Randomized dynamic graph algorithms with polylogarithmic time per operation , 1995, STOC '95.
[3] Hans-Jürgen Bandelt,et al. Embedding into the rectilinear grid , 1998, Networks.
[4] Jeff Edmonds. Embedding into l2∞ is easy embedding into l2∞ is NP-complete , 2007, SODA '07.
[5] David Avis,et al. The cut cone, L1 embeddability, complexity, and multicommodity flows , 1991, Networks.
[6] Seth M. Malitz,et al. A bounded compactness theorem forL1-embeddability of metric spaces in the plane , 1992, Discret. Comput. Geom..
[7] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[8] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[9] Hans-Jürgen Bandelt,et al. Embedding metric spaces in the rectilinear plane: A six-point criterion , 1996, Discret. Comput. Geom..
[10] Michael A. Trick,et al. Faster Decomposition of Totally Decomposable Metrics with Applications , 1996 .
[11] Hans-Jürgen Bandelt,et al. Embedding into Rectilinear Spaces , 1998, Discret. Comput. Geom..
[12] Leonard M. Blumenthal,et al. Theory and applications of distance geometry , 1954 .
[13] P. Assouad,et al. Espaces Métriques Plongeables Dans Un Hypercube: Aspects Combinatoires , 1980 .
[14] Mihai Badoiu,et al. Approximation algorithm for embedding metrics into a two-dimensional space , 2003, SODA '03.