The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling

The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulations of the heart. However, there is no consensus on physiologically correct and computationally tractable pericardial boundary conditions. Here, we propose to model the pericardial influence as a parallel spring and dashpot acting in normal direction to the epicardium. Using a four-chamber geometry, we compare a model with pericardial boundary conditions to a model with fixated apex. The influence of pericardial stiffness is demonstrated in a parametric study. Comparing simulation results to measurements from cine magnetic resonance imaging reveals that adding pericardial boundary conditions yields a better approximation with respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation error. We demonstrate that this simple model of pericardial–myocardial interaction can correctly predict the pumping mechanisms of the heart as previously assessed in clinical studies. Utilizing a pericardial model not only can provide much more realistic cardiac mechanics simulations but also allows new insights into pericardial–myocardial interaction which cannot be assessed in clinical measurements yet.

[1]  D R Boughner,et al.  Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. , 1985, Circulation research.

[2]  Joakim Sundnes,et al.  An integrated electromechanical-growth heart model for simulating cardiac therapies , 2015, Biomechanics and Modeling in Mechanobiology.

[3]  Anna Bjällmark,et al.  Modelling the heart with the atrioventricular plane as a piston unit. , 2015, Medical engineering & physics.

[4]  S L Zeger,et al.  Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. , 1987, Journal of biomechanics.

[5]  C. A. Figueroa,et al.  Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data , 2012, Biomechanics and Modeling in Mechanobiology.

[6]  E. R. Smith,et al.  Assessment of pericardial constraint in dogs. , 1985, Circulation.

[7]  Hervé Delingette,et al.  Cardiac Motion Estimation Using a ProActive Deformable Model: Evaluation and Sensitivity Analysis , 2010, STACOM/CESC.

[8]  Hervé Delingette,et al.  Noname manuscript No. (will be inserted by the editor) Fast Parameter Calibration of a Cardiac Electromechanical Model from Medical Images based on the Unscented Transform , 2012 .

[9]  Mariano Vázquez,et al.  Fully coupled fluid‐electro‐mechanical model of the human heart for supercomputers , 2018, International journal for numerical methods in biomedical engineering.

[10]  Roy C. P. Kerckhoffs,et al.  Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation , 2006, Annals of Biomedical Engineering.

[11]  K. Sevre,et al.  Handbook of cardiac anatomy, physiology, and devices , 2006 .

[12]  Gerhard Sommer,et al.  Biomechanical properties and microstructure of human ventricular myocardium. , 2015, Acta biomaterialia.

[13]  Michael S Sacks,et al.  Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. , 2003, Journal of biomechanical engineering.

[14]  Manfred Liebmann,et al.  Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation , 2016, J. Comput. Phys..

[15]  Siamak N. Doost,et al.  Heart blood flow simulation: a perspective review , 2016, Biomedical engineering online.

[16]  Berend E. Westerhof,et al.  The arterial Windkessel , 2009, Medical & Biological Engineering & Computing.

[17]  J. P. Holt,et al.  Pericardial and Ventricular Pressure , 1960, Circulation research.

[18]  L. Erhardt,et al.  Left ventricular atrioventricular plane displacement: an echocardiographic technique for rapid assessment of prognosis in heart failure. , 1997, Heart.

[19]  Robert C Gorman,et al.  Sensitivity of left ventricular mechanics to myofiber architecture: A finite element study , 2016, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[20]  G. Holzapfel,et al.  An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment , 2016, Computer methods in biomechanics and biomedical engineering.

[21]  Reza Razavi,et al.  Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. , 2008, Radiology.

[22]  B. Butler,et al.  Phospholipids identified on the pericardium and their ability to impart boundary lubrication , 2006, Annals of Biomedical Engineering.

[23]  M Matsuzaki,et al.  Effect of left ventricular contractile performance on passive left atrial filling—Clinical study using radionuclide angiography , 1994, Clinical cardiology.

[24]  B. Wandt,et al.  The mode of left ventricular pumping: is there an outer contour change in addition to the atrioventricular plane displacement? , 2001, Clinical physiology.

[25]  S W Rabkin,et al.  Mathematical and mechanical modeling of stress-strain relationship of pericardium. , 1975, The American journal of physiology.

[26]  Theo Arts,et al.  Towards model-based analysis of cardiac MR tagging data: Relation between left ventricular shear strain and myofiber orientation , 2006, Medical Image Anal..

[27]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[28]  Michael Ortiz,et al.  A spatially varying mathematical representation of the biventricular cardiac fiber architecture , 2016 .

[29]  D G Gibson,et al.  Measurement of postoperative pericardial pressure in man. , 1977, British heart journal.

[30]  Myrianthi Hadjicharalambous,et al.  Estimation of passive and active properties in the human heart using 3D tagged MRI , 2015, Biomechanics and Modeling in Mechanobiology.

[31]  Gernot Plank,et al.  Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction , 2013 .

[32]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[33]  Sebastian Kozerke,et al.  Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images , 2017, Medical Image Anal..

[34]  Einar Heiberg,et al.  Design and validation of Segment - freely available software for cardiovascular image analysis , 2010, BMC Medical Imaging.

[35]  Xi-Qiao Feng,et al.  Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials , 2014, Biomechanics and modeling in mechanobiology.

[36]  Han Wen,et al.  The visceral pericardium: macromolecular structure and contribution to passive mechanical properties of the left ventricle. , 2007, American journal of physiology. Heart and circulatory physiology.

[37]  S. Kovacs,et al.  Assessment and consequences of the constant-volume attribute of the four-chambered heart. , 2003, American journal of physiology. Heart and circulatory physiology.

[38]  Yubing Shi,et al.  Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System , 2011, Biomedical engineering online.

[39]  Tommaso Mansi,et al.  Image-based physiological and statistical models of the heart: application to tetralogy of Fallot. (Modèles physiologiques et statistiques du cœur guidés par imagerie médicale : application à la tétralogie de Fallot) , 2010 .

[40]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[41]  P. Tallec,et al.  An energy-preserving muscle tissue model: formulation and compatible discretizations , 2012 .

[42]  N. Bayley,et al.  Failure , 1890, The Hospital.

[43]  Michael W Gee,et al.  A monolithic 3D‐0D coupled closed‐loop model of the heart and the vascular system: Experiment‐based parameter estimation for patient‐specific cardiac mechanics , 2017, International journal for numerical methods in biomedical engineering.

[44]  Sander Land,et al.  Influence of atrial contraction dynamics on cardiac function , 2018, International journal for numerical methods in biomedical engineering.

[45]  Wolfgang A. Wall,et al.  A computational strategy for prestressing patient‐specific biomechanical problems under finite deformation , 2010 .

[46]  O. Dössel,et al.  Simulation of the contraction of the ventricles in a human heart model including atria and pericardium , 2014, Biomechanics and modeling in mechanobiology.

[47]  Susan Standring PhD DSc Gray's Anatomy: The Anatomical Basis of Clinical Practice , 2005 .

[48]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[49]  Hervé Delingette,et al.  Patient-specific Electromechanical Models of the Heart for the Prediction of Pacing Acute Effects in Crt: a Preliminary Clinical Validation , 2022 .

[50]  W. E. Johnston,et al.  Nonuniform distribution of normal pericardial fluid , 1990, Basic Research in Cardiology.

[51]  A. Arutunyan,et al.  Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill. , 2015, American journal of physiology. Heart and circulatory physiology.

[52]  Martin Kronbichler,et al.  An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology , 2018, International journal for numerical methods in biomedical engineering.

[53]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  S W Rabkin,et al.  Epicardial fat: properties, function and relationship to obesity , 2007, Obesity reviews : an official journal of the International Association for the Study of Obesity.

[55]  Marcus Carlsson,et al.  Letter to the Editor: Atrioventricular plane displacement is not the sole mechanism of atrial and ventricular refill. , 2015, American journal of physiology. Heart and circulatory physiology.

[56]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[57]  V. Bhargava,et al.  Heart size and maximal cardiac output are limited by the pericardium. , 1992, The American journal of physiology.

[58]  Wolfgang A. Wall,et al.  Automatic mapping of atrial fiber orientations for patient‐specific modeling of cardiac electromechanics using image registration , 2018, International journal for numerical methods in biomedical engineering.

[59]  Paul A. Iaizzo Handbook of Cardiac Anatomy, Physiology, and Devices , 2005 .

[60]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[61]  Marcus Carlsson,et al.  Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. , 2007, American journal of physiology. Heart and circulatory physiology.

[62]  D. Spodick,et al.  The normal and diseased pericardium: current concepts of pericardial physiology, diagnosis and treatment. , 1983, Journal of the American College of Cardiology.

[63]  David H. Spodick,et al.  The Pericardium: A Comprehensive Textbook , 1996 .

[64]  Guillaume Houzeaux,et al.  What a Difference in Biomechanics Cardiac Fiber Makes , 2012, STACOM.

[65]  J. P. Holt,et al.  The normal pericardium. , 1970, The American journal of cardiology.

[66]  I. LeGrice,et al.  Shear properties of passive ventricular myocardium. , 2002, American journal of physiology. Heart and circulatory physiology.

[67]  Ellen Kuhl,et al.  The Living Heart Project: A robust and integrative simulator for human heart function. , 2014, European journal of mechanics. A, Solids.

[68]  Charles R. Lambert The pericardium: A comprehensive textbook by David H. Spodick Marcel Dekker, Inc., New York (1997) 464 pages, illustrated, $165.00 ISBN: 0-8247-9316-1 , 1998 .

[69]  W J Keon,et al.  The relationship between pericardial pressure and right atrial pressure: an intraoperative study. , 1986, Circulation.

[70]  F N SUDAK,et al.  INTRAPERICARDIAL AND INTRACARDIAC PRESSURES AND THE EVENTS OF THE CARDIAC CYCLE IN MUSTELUS CANIS (MITCHILL). , 1965, Comparative biochemistry and physiology.

[71]  W A Wall,et al.  Prestressing in finite deformation abdominal aortic aneurysm simulation. , 2009, Journal of biomechanics.

[72]  Felix Bourier,et al.  Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies , 2017, Cardiovascular Engineering and Technology.

[73]  P Moireau,et al.  Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model , 2012, Biomechanics and modeling in mechanobiology.

[74]  S A Glantz,et al.  The Pericardium Substantially Affects the Left Ventricular Diastolic Pressure‐Volume Relationship in the Dog , 1978, Circulation research.