Recruitment Studies: Manual on Precision and Accuracy of Tools

University of Liverpool, Port Erin Marine Laboratory, Port Erin, Isle of Man 1M9 6JA, UK. Institute für Meereskunde an der Universität Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. Spanish Institute of Oceanography, Oceanographic Centre of Málaga, Puerto Pesquero s/n, Apdo 285, 29640 Fuengirola, Málaga, Spain. Department of Fisheries and Marine Biology, High Technology Center in Bergen, University of Bergen, N-5020 Bergen, Norway. Institute of Marine Research, Department of Coastal Zone, Flødevigen Marine Research Station, N-4817 His, Norway. IFREMER, B.P. 70, 29280 Plouzané, France

[1]  J. P. Ruyet,et al.  Effect of starvation on RNA, DNA and protein content of laboratory-reared larvae and juveniles of Solea solea , 1991 .

[2]  D. Townsend,et al.  Strontium:calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature☆ , 1992 .

[3]  C. Clemmesen,et al.  Does otolith structure reflect the nutritional condition of a fish larva? Comparison of otolith structure and biochemical index (RNA/DNA ratio) determined on cod larvae , 1996 .

[4]  L. Chícharo,et al.  Estimation of starvation and diel variation of the RNA/DNA ratios in field-caught Sardina pilchardus larvae off the north of Spain , 1998 .

[5]  J. Hunter,et al.  SIZE-SPECIFIC VULNERABILITY OF NORTHERN ANCHOVY, ENGRAULIS MORDAX, LARVAE TO PREDATION BY FISHES , 1986 .

[6]  Donald L. DeAngelis,et al.  Growth Rate Variation and Larval Survival: Inferences from an Individual-Based Size-Dependent Predation Model , 1993 .

[7]  R. Slater The extraction of total RNA by the detergent and phenol method. , 1985, Methods in molecular biology.

[8]  A. Köhler,et al.  Measuring lysosomal membrane stability. ICES Techniques in Marine Environmental Sciences , 2004 .

[9]  M. Morita,et al.  Stock Discrimination by Trace-element Analysis of Otoliths of Orange Roughy (Hoplostethus atlanticus), a Deep-water Marine Teleost , 1991 .

[10]  J. Kalish Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and non-anadromous salmonids , 1990 .

[11]  E.,et al.  Chemistry and composition of fish otoliths : pathways , mechanisms and applications , 2006 .

[12]  E. Houde Fish early life dynamics and recruitment variability , 1987 .

[13]  W. Tzeng,et al.  Changes in otolith microchemistry of the Japanese eel, Anguitta japonica, during its migration from , 1994 .

[14]  Lawrence J. Buckley,et al.  RNA-DNA ratio: an index of larval fish growth in the sea , 1984 .

[15]  M. Doyle A morphological staging system for the larval development of the herring, Clupea harengus L. , 1977, Journal of the Marine Biological Association of the United Kingdom.

[16]  A. García,et al.  Daily larval growth and RNA and DNA content of the NW Mediterranean anchovy Engraulis encrasicolus and their relations to the environment , 1998 .

[17]  S. Campana,et al.  Otolith Elemental Fingerprinting for Stock Identification of Atlantic Cod (Gadus morhua) Using Laser Ablation ICPMS , 1994 .

[18]  D. P. Fey,et al.  Migrations in an extreme northern population of Arctic charr Salvelinus alpinus: insights from otolith microchemistry , 1996 .

[19]  C. Clemmesen The effect of food availability, age or size on the RNA/DNA ratio of individually measured herring larvae: laboratory calibration , 1994 .

[20]  R. Thresher,et al.  Effects of specimen handling and otolith preparation on concentration of elements in fish otoliths , 1998 .

[21]  R. Thresher,et al.  Stock structure of the southern bluefin tuna Thunnus maccoyii: an investigation based on probe microanalysis of otolith composition , 1995 .

[22]  Cynthia M. Jones,et al.  Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths , 1998 .

[23]  Milton Da,et al.  Identifying the spawning estuaries of the tropical shad, terubok Tenualosa toli, using otolith microchemistry , 1997 .

[24]  M. Livingston,et al.  Trace elements in the otoliths of New Zealand blue grenadier (Macruronus novaezelandiae) as an aid to stock discrimination , 1996 .

[25]  J. Bergeron,et al.  Effet de la privation de nourriture sur la teneur en ADN de la larve de sole (Solea solea L.) , 1991 .

[26]  D. Townsend,et al.  Strontium:cakium concentration ratios in otoliths of herring larvae as indicators of environmental histories , 2004, Environmental Biology of Fishes.

[27]  R. Thresher,et al.  Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry , 1997 .

[28]  F. Hovenkamp,et al.  Growth, otolith growth and RNA/DNA ratios of larval plaice Pleuronectes platessa in the North Sea 1987 to 1989 , 1991 .

[29]  F. Martin,et al.  The effect of starvation on RNA: DNA ratios and growth of larval striped bass, Morone saxatalis , 1985 .

[30]  J. Purcell,et al.  Vulnerability of larval herring (Clupea harengus pallasi) to capture by the jellyfish Aequorea victoria , 1987 .

[31]  R. Radtke Strontium-calcium concentration ratios in fish otoliths as environmental indicators , 1989 .

[32]  L. Buckley Effects of Temperature on Growth and Biochemical Composition of Larval Winter Flounder Pseudopleuronectes americanus , 1982 .

[33]  C. Paoletti,et al.  A new fluorometric method for RNA and DNA determination. , 1966, Analytical biochemistry.

[34]  W. Perkins,et al.  Developments in the quantitative and semiquantitative determination of trace elements in carbonates by laser ablation inductively coupled plasma mass spectrometry , 1992 .

[35]  D. Townsend,et al.  Recruitment implications of larval herring overwintering distributions in the Gulf of Maine, inferred using a new otolith technique , 1989 .

[36]  Akbar Montaser,et al.  Inductively coupled plasma mass spectrometry , 1998 .

[37]  D. Townsend,et al.  Use of Otolith Strontium:Calcium Ratios for Hindcasting Larval Cod Gadus Morhua Distributions Relative to Water Masses on Georges Bank , 1995 .

[38]  R. Thresher,et al.  Electron probe microanalysis of fish otoliths — evaluation of techniques for studying age and stock discrimination , 1992 .

[39]  J. Bergeron Nucleic acids in ichthyoplankton ecology: a review, with emphasis on recent advances for new perspectives , 1997 .

[40]  B. Norcross,et al.  Electron microprobe analysis of juvenile walleye pollock, Theragra chalcogramma, otoliths from Alaska: a pilot stock separation study , 1995, Environmental Biology of Fishes.

[41]  J. Rooker,et al.  Application of RNA : DNA ratios to evaluate the condition and growth of larval and juvenile red drum (Sciaenops ocellatus). , 1996 .

[42]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[43]  W. Perkins,et al.  Quantitative analysis of trace elements in carbonates using laser ablation inductively coupled plasma mass spectrometry , 1991 .

[44]  D. Cortés,et al.  Growth of North Alboran Sea sardine larvae estimated by otolith microstructure, nucleic acids and protein content , 2001 .

[45]  M. Morita,et al.  Trace elements in the otoliths of yellow-eye mullet (Aldrichetta forsteri) as an aid to stock identification , 1992 .

[46]  F. Hovenkamp Growth differences in larval plaice Pleuronectes platessa in the Southern Bight of the North Sea as indicated by otolith increments and RNA/DNA ratios , 1989 .

[47]  M. Westerman,et al.  RNA:DNA ratio during the critical period and early larval growth of the red drum Sciaenops ocellatus , 1994 .

[48]  I. Suthers,et al.  Relative RNA Content as a Measure of Condition in Larval and Juvenile Fish , 1996 .

[49]  C. Cooney,et al.  The isolation of satellite DNA by density gradient centrifugation. , 1985, Methods in molecular biology.

[50]  D. Houlihan,et al.  The effects of temperature acclimation on protein synthesis rates and nucleic acid content of juvenile cod (Gadus morhua L.) , 1992 .