Stress Overshoot Behavior in Polymer Nanocomposites Filled with Spherical Nanoparticles under Steady Shear Flow via Molecular Dynamics Simulation

[1]  K. Schweizer,et al.  Nature of Steady-State Fast Flow in Entangled Polymer Melts: Chain Stretching, Shear Thinning, and Viscosity Scaling , 2022, Macromolecules.

[2]  Liqun Zhang,et al.  Preparation of silica/natural rubber masterbatch using solution compounding , 2022, Polymer.

[3]  A. Jayaraman,et al.  Effect of Nanorod Physical Roughness on the Aggregation and Percolation of Nanorods in Polymer Nanocomposites. , 2021, ACS macro letters.

[4]  Haoyu Wu,et al.  Rheological mechanism of polymer nanocomposites filled with spherical nanoparticles: Insight from molecular dynamics simulation , 2021 .

[5]  R. Colby,et al.  Rheological response of entangled isotactic polypropylene melts in strong shear flows: Edge fracture, flow curves, and normal stresses , 2021, Journal of Rheology.

[6]  A. Jayaraman,et al.  Molecular Modeling and Simulation of Polymer Nanocomposites with Nanorod Fillers. , 2021, The journal of physical chemistry. B.

[7]  Xiaohui Tian,et al.  Viscoelasticity of Nanosheet-Filled Polymer Composites: Three Regimes in the Enhancement of Moduli. , 2020, The journal of physical chemistry. B.

[8]  G. Marrucci,et al.  Melts of Linear Polymers in Fast Flows , 2020 .

[9]  F. Puosi,et al.  Predictive relation for the α-relaxation time of a coarse-grained polymer melt under steady shear , 2020, Science Advances.

[10]  Zuowei Wang,et al.  Nonlinear rheology and dynamics of supramolecular polymer networks formed by associative telechelic chains under shear and extensional flows , 2020, Journal of Rheology.

[11]  B. Edwards,et al.  Elucidating the Molecular Rheology of Entangled Polymeric Fluids via Comparison of Atomistic Simulations and Model Predictions , 2019, Macromolecules.

[12]  Fucheng Tian,et al.  Stretching and orientation dynamics of linear and comb polymers at shear stress overshoot , 2019, Journal of Rheology.

[13]  S. Rogers,et al.  Instantaneous dimensionless numbers for transient nonlinear rheology , 2019, Rheologica Acta.

[14]  B. Edwards,et al.  Individual Molecular Dynamics of an Entangled Polyethylene Melt Undergoing Steady Shear Flow: Steady-State and Transient Dynamics , 2019, Polymers.

[15]  K. Schweizer,et al.  Consequences of Delayed Chain Retraction on the Rheology and Stretch Dynamics of Entangled Polymer Liquids under Continuous Nonlinear Shear Deformation , 2018 .

[16]  V. Ganesan,et al.  Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix , 2018 .

[17]  U. Sundararaj,et al.  Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites , 2018 .

[18]  K. Schweizer,et al.  Physics of the Stress Overshoot and Chain Stretch Dynamics of Entangled Polymer Liquids Under Continuous Startup Nonlinear Shear. , 2018, ACS macro letters.

[19]  B. Edwards,et al.  Evaluation of reptation-based modeling of entangled polymeric fluids including chain rotation via nonequilibrium molecular dynamics simulation , 2017 .

[20]  A. Patti,et al.  Modeling the Effect of Polymer Chain Stiffness on the Behavior of Polymer Nanocomposites. , 2017, The journal of physical chemistry. B.

[21]  C. Baig,et al.  Effect of Chain Orientation and Stretch on the Stress Overshoot of Entangled Polymeric Materials under Start-Up Shear , 2017 .

[22]  Xue Li,et al.  Insight into the Dispersion Mechanism of Polymer-Grafted Nanorods in Polymer Nanocomposites: A Molecular Dynamics Simulation Study , 2017 .

[23]  Qian Huang,et al.  Shear and Extensional Rheology of Polystyrene Melts and Solutions with the Same Number of Entanglements , 2016 .

[24]  C. Baig Torsional Linearity in Nonlinear Stress-Optical Regimes for Polymeric Materials. , 2016, ACS macro letters.

[25]  A. E. Likhtman,et al.  Simulating Startup Shear of Entangled Polymer Melts. , 2015, ACS macro letters.

[26]  F. Stadler,et al.  Anomalous Rheological Behavior of Dendritic Nanoparticle/Linear Polymer Nanocomposites , 2015 .

[27]  S. H. Anastasiadis,et al.  Effects of nanoscopic-confinement on polymer dynamics. , 2015, Soft matter.

[28]  R. Golestanian,et al.  Driven active and passive nematics , 2015, 1504.06690.

[29]  G. Wilde,et al.  Origin of stress overshoot in amorphous solids , 2015 .

[30]  Yihu Song,et al.  Linear rheology of nanofilled polymers , 2015 .

[31]  Yuichi Masubuchi,et al.  Origin of Stress Overshoot under Start-up Shear in Primitive Chain Network Simulation. , 2014, ACS macro letters.

[32]  M. Wilhelm,et al.  A rheological criterion to determine the percolation threshold in polymer nano-composites , 2014, Rheologica Acta.

[33]  Zhen‐Gang Wang,et al.  Origin of Stress Overshoot during Startup Shear of Entangled Polymer Melts. , 2014, ACS macro letters.

[34]  L. An,et al.  Shear thinning behavior of linear polymer melts under shear flow via nonequilibrium molecular dynamics. , 2014, The Journal of chemical physics.

[35]  D. Cao,et al.  Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites , 2014 .

[36]  D. Cao,et al.  Existence of a Glassy Layer in the Polymer-Nanosheet Interface: Evidence from Molecular Dynamics , 2014 .

[37]  D. Vlassopoulos,et al.  Double Stress Overshoot in Start-Up of Simple Shear Flow of Entangled Comb Polymers. , 2013, ACS macro letters.

[38]  D. Rodrigue,et al.  Relationships between linear and nonlinear shear response of polymer nano-composites , 2012, Rheologica Acta.

[39]  A. Perejón,et al.  Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change , 2012 .

[40]  D. Sussman,et al.  Microscopic Theory of Quiescent and Deformed Topologically Entangled Rod Solutions: General Formulation and Relaxation after Nonlinear Step Strain , 2012 .

[41]  Denis Rodrigue,et al.  Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites , 2012, Rheologica Acta.

[42]  D. Cao,et al.  Polymer-nanoparticle interfacial behavior revisited: a molecular dynamics study. , 2011, Physical chemistry chemical physics : PCCP.

[43]  D. Gigmes,et al.  Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior , 2011 .

[44]  R. Krishnamoorti,et al.  Rheology and processing of polymer nanocomposites , 2010 .

[45]  Pinar Akcora,et al.  Segmental Dynamics in PMMA-Grafted Nanoparticle Composites , 2010 .

[46]  V. Mavrantzas,et al.  Flow Effects on Melt Structure and Entanglement Network of Linear Polymers: Results from a Nonequilibrium Molecular Dynamics Simulation Study of a Polyethylene Melt in Steady Shear , 2010 .

[47]  S. Bechtel,et al.  Transient shear rheology of carbon nanofiber/polystyrene melt composites , 2010 .

[48]  A. Yodh,et al.  Rheology of Carbon Nanotube Networks During Gelation , 2010 .

[49]  Pinar Akcora,et al.  “Gel-like” Mechanical Reinforcement in Polymer Nanocomposite Melts , 2010 .

[50]  Sanat K. Kumar,et al.  Network Effects on the Nonlinear Rheology of Polymer Nanocomposites , 2008 .

[51]  R. Krishnamoorti,et al.  Steady Shear Response of Carbon Nanotube Networks Dispersed in Poly(ethylene oxide) , 2008 .

[52]  B. Edwards,et al.  A molecular dynamics study of the stress–optical behavior of a linear short-chain polyethylene melt under shear , 2007 .

[53]  Alfred J. Crosby,et al.  Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties , 2007 .

[54]  P. Carreau,et al.  Stress overshoots of organoclay nanocomposites in transient shear flow , 2007 .

[55]  K. Schweizer,et al.  Theory of Phase Separation in Polymer Nanocomposites , 2006 .

[56]  B. D. Todd,et al.  A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows. , 2006, The Journal of chemical physics.

[57]  G. McKenna,et al.  Rheological Measurements of the Thermoviscoelastic Response of Ultrathin Polymer Films , 2005, Science.

[58]  P. Carreau,et al.  Rheological properties of short fiber filled polypropylene in transient shear flow , 2004 .

[59]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[60]  R. Krishnamoorti,et al.  Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites , 2003 .

[61]  A. Lele,et al.  A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites , 2001 .

[62]  Sahimi,et al.  Nonequilibrium molecular dynamics simulations of transport and separation of gas mixtures in nanoporous materials , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  E. Giannelis,et al.  Rheology of End-Tethered Polymer Layered Silicate Nanocomposites , 1997 .

[64]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[65]  D. S. Pearson,et al.  Flow‐Induced Birefringence of Concentrated Polyisoprene Solutions , 1989 .

[66]  Gary P. Morriss,et al.  Nonlinear-response theory for steady planar Couette flow , 1984 .

[67]  E. Menezes,et al.  Nonlinear rheological behavior of polymer systems for several shear‐flow histories , 1982 .