Robustifying Markowitz

[1]  Shahar Mendelson,et al.  On Monte-Carlo methods in convex stochastic optimization , 2021, The Annals of Applied Probability.

[2]  W. Härdle,et al.  Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies , 2020, Quantitative Finance.

[3]  Samuel B. Hopkins,et al.  Robust and Heavy-Tailed Mean Estimation Made Simple, via Regret Minimization , 2020, NeurIPS.

[4]  Ankit Pensia,et al.  Outlier Robust Mean Estimation with Subgaussian Rates via Stability , 2020, NeurIPS.

[5]  Banghua Zhu,et al.  Robust estimation via generalized quasi-gradients , 2020, Information and Inference: A Journal of the IMA.

[6]  Ralph E. Steuer,et al.  Robust portfolio optimization: a categorized bibliographic review , 2020, Annals of Operations Research.

[7]  Boris Fays,et al.  Risk Optimizations on Basis Portfolios: The Role of Sorting , 2020 .

[8]  Nikita Zhivotovskiy,et al.  Robust k-means Clustering for Distributions with Two Moments , 2020, The Annals of Statistics.

[9]  Prasad Raghavendra,et al.  Algorithms for heavy-tailed statistics: regression, covariance estimation, and beyond , 2019, STOC.

[10]  G. Lugosi,et al.  Robust multivariate mean estimation: The optimality of trimmed mean , 2019, The Annals of Statistics.

[11]  Shahar Mendelson,et al.  Mean Estimation and Regression Under Heavy-Tailed Distributions: A Survey , 2019, Found. Comput. Math..

[12]  G. Lecu'e,et al.  Robust sub-Gaussian estimation of a mean vector in nearly linear time , 2019, The Annals of Statistics.

[13]  Alessandro Rudi,et al.  Affine Invariant Covariance Estimation for Heavy-Tailed Distributions , 2019, COLT.

[14]  Peter L. Bartlett,et al.  Fast Mean Estimation with Sub-Gaussian Rates , 2019, COLT.

[15]  Qiang Sun,et al.  User-Friendly Covariance Estimation for Heavy-Tailed Distributions , 2018, Statistical Science.

[16]  S. Mendelson,et al.  Robust covariance estimation under $L_{4}-L_{2}$ norm equivalence , 2018, The Annals of Statistics.

[17]  Samuel B. Hopkins Mean estimation with sub-Gaussian rates in polynomial time , 2018, The Annals of Statistics.

[18]  Mengmeng Ao,et al.  Approaching Mean-Variance Efficiency for Large Portfolios , 2018, The Review of Financial Studies.

[19]  Jerry Li,et al.  Being Robust (in High Dimensions) Can Be Practical , 2017, ICML.

[20]  G. Lugosi,et al.  Sub-Gaussian estimators of the mean of a random vector , 2017, The Annals of Statistics.

[21]  Olivier Ledoit,et al.  Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks , 2017 .

[22]  Jianqing Fan,et al.  Robust Covariance Estimation for Approximate Factor Models. , 2016, Journal of econometrics.

[23]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[24]  Sébastien Bubeck Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..

[25]  V. Koltchinskii,et al.  Concentration inequalities and moment bounds for sample covariance operators , 2014, 1405.2468.

[26]  Noureddine El Karoui,et al.  On the Realized Risk of High-Dimensional Markowitz Portfolios , 2013, SIAM J. Financial Math..

[27]  Kunpeng Li,et al.  STATISTICAL ANALYSIS OF FACTOR MODELS OF HIGH DIMENSION , 2012, 1205.6617.

[28]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[29]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[30]  Michael Wolf,et al.  Financial Valuation and Risk Management Working Paper No . 664 Robust Performance Hypothesis Testing with the Variance Olivier Ledoit , 2010 .

[31]  Wing-Keung Wong,et al.  ENHANCEMENT OF THE APPLICABILITY OF MARKOWITZ'S PORTFOLIO OPTIMIZATION BY UTILIZING RANDOM MATRIX THEORY , 2009 .

[32]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[33]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[34]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[35]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[36]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[37]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[38]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[39]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[40]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[41]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[42]  Steven Strongin,et al.  Beating Benchmarks , 2000 .

[43]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[44]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[45]  R. Green,et al.  When Will Mean-Variance Efficient Portfolios Be Well Diversified? , 1992 .

[46]  E. Fama,et al.  The Cross‐Section of Expected Stock Returns , 1992 .

[47]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[48]  P. Frost,et al.  For better performance , 1988 .

[49]  Peter A. Frost,et al.  An Empirical Bayes Approach to Efficient Portfolio Selection , 1986, Journal of Financial and Quantitative Analysis.

[50]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[51]  G. Hunanyan,et al.  Portfolio Selection , 2019, Finanzwirtschaft, Banken und Bankmanagement I Finance, Banks and Bank Management.

[52]  Sander Barendse,et al.  Efficient Portfolio Selection in a Large Market , 2017 .

[53]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[54]  S. Szarek On the best constants in the Khinchin inequality , 1976 .

[55]  Jianqing Fan,et al.  Journal of the American Statistical Association Vast Portfolio Selection with Gross-exposure Constraints Vast Portfolio Selection with Gross-exposure Constraints , 2022 .