Enantiomeric Excess Sensitivity to Below One Percent by Using Femtosecond Photoelectron Circular Dichroism.

Photoelectron circular dichroism (PECD) is experimentally investigated with chiral specimens with varying amounts of enantiomeric excess (ee). As a prototype, we measure and analyze the photoelectron angular distribution from randomly oriented fenchone molecules in the gas phase that result from ionization with circularly polarized femtosecond laser pulses. The quantification of these measurements shows a linear dependence with respect to the ee values. In addition, differences in the ee values (denoted as detection limit) of below one percent can be distinguished for nearly enantiopure samples, as well as for almost racemates. In combination with the use of a reference, the assignment of absolute ee values is possible. The present measurement time is a few minutes, but this could be reduced. This table-top laser-based approach should facilitate widespread implementation in chiral analysis.

[1]  I. Powis,et al.  Valence shell one-photon photoelectron circular dichroism in chiral systems , 2015 .

[2]  I. Powis,et al.  Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry , 2015, Nature Communications.

[3]  T. Brixner,et al.  Optical discrimination of racemic from achiral solutions. , 2015, Physical chemistry chemical physics : PCCP.

[4]  T. Baumert,et al.  Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Laurent Nahon,et al.  A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments , 2014, Nature Photonics.

[6]  D. Patterson,et al.  New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess. , 2014, Physical chemistry chemical physics : PCCP.

[7]  I. Powis,et al.  A photoionization investigation of small, homochiral clusters of glycidol using circularly polarized radiation and velocity map electron-ion coincidence imaging. , 2014, Physical chemistry chemical physics : PCCP.

[8]  I. Powis,et al.  Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection. , 2013, The Journal of chemical physics.

[9]  D. Patterson,et al.  Sensitive chiral analysis via microwave three-wave mixing. , 2013, Physical review letters.

[10]  U. Boesl,et al.  Resonance-enhanced multiphoton ionization with circularly polarized light: chiral carbonyls , 2013, Analytical and Bioanalytical Chemistry.

[11]  T. Baumert,et al.  Zirkulardichroismus in den Photoelektronen‐Winkelverteilungen von Campher und Fenchon aus der Multiphotonenionisation mit Femtosekunden‐Laserpulsen , 2012 .

[12]  T. Baumert,et al.  Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. , 2012, Angewandte Chemie.

[13]  K. Weitzel,et al.  Analysis of chirality by femtosecond laser ionization mass spectrometry. , 2012, Chirality.

[14]  T. Baumert,et al.  Photoelectron angular distributions from strong-field coherent electronic excitation , 2009 .

[15]  Xiaolin Cao,et al.  Determination of enantiomeric excess in samples of chiral molecules using fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoring. , 2004, Analytical chemistry.

[16]  T. Wenzel,et al.  Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. , 2003, Chirality.

[17]  U. Heinzmann,et al.  Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. , 2001, Physical review letters.

[18]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[19]  E. Putievsky,et al.  Chiral gc analysis of enantiomerically pure fenchone in essential oils , 1992 .

[20]  H. Nowotny,et al.  Gaschromatographische Enantiomerentrennung an Cyclodextrinderivaten , 1990 .

[21]  H. Nowotny,et al.  Gas Chromatographic Separation of Enantiomers on Cyclodextrin Derivatives , 1990 .

[22]  V. Schurig Gaschromatographische Enantiomerentrennung an metallkomplexfreien Stationärphasen , 1984 .

[23]  V. Schurig Gas Chromatographic Separation of Enantiomers on Optically Active Metal‐Complex‐Free Stationary Phases. New Analytical Methods (24) , 1984 .

[24]  B. Ritchie Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions , 1976 .

[25]  C. Yang,et al.  On the Angular Distribution in Nuclear Reactions and Coincidence Measurements , 1948 .