A genetic algorithm estimation of the term structure of interest rates

The term structure of interest rates is a key instrument for financial research. It provides relevant information for pricing deterministic financial cash flows, it measures economic market expectations and it is extremely useful when assessing the effectiveness of monetary policy decisions. However, it is not directly observable and needs to be estimated by smoothing asset pricing data through statistical techniques. The most popular techniques adjust parsimonious functional forms based on bond yields to maturity. Unfortunately, these functions, which need to be optimised, are highly non-linear which make them very sensitive to the initial conditions. In this context, this paper proposes the use of genetic algorithms to find the values for the initial conditions and to reduce the risk of false convergence, showing that stable parameters are obtained without imposing arbitrary restrictions.

[1]  F. Diebold,et al.  A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources, and Generalized Duration , 2004 .

[2]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[3]  Francesco Battaglia,et al.  Fitting piecewise linear threshold autoregressive models by means of genetic algorithms , 2004, Comput. Stat. Data Anal..

[4]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[5]  Peter Winker,et al.  2nd Special Issue on Applications of Optimization Heuristics to Estimation and Modelling Problems , 2007, Comput. Stat. Data Anal..

[6]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[7]  Jamie Alcock,et al.  A genetic estimation algorithm for parameters of stochastic ordinary differential equations , 2004, Comput. Stat. Data Anal..

[8]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[9]  Paul Diamant,et al.  Semi-Empirical Smooth Fit To The Treasury Yield Curve , 1993 .

[10]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[11]  L. Booker Foundations of genetic algorithms. 2: L. Darrell Whitley (Ed.), Morgan Kaufmann, San Mateo, CA, 1993, ISBN 1-55860-263-1, 322 pp., US$45.95 , 1994 .

[12]  J. McCulloch,et al.  Measuring the Term Structure of Interest Rates , 1971 .

[13]  Zheng Yang,et al.  GSA-based maximum likelihood estimation for threshold vector error correction model , 2007, Comput. Stat. Data Anal..

[14]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[15]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[16]  Mark Deacon,et al.  Estimating and Interpreting the Yield Curve , 1996 .

[17]  Nicola Anderson,et al.  New estimates of the UK real and nominal yield curves , 2001 .

[18]  David Streliski,et al.  Yield Curve Modelling at the Bank of Canada , 1999 .

[19]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[20]  Soledad Núñez Ramos Estimación de la estructura temporal de los tipos de interés en España: elección entre métodos alternativos , 1995 .

[21]  Fernando Fernández-Rodríguez,et al.  Interest Rate Term Structure Modeling Using Free-Knot Splines , 2006 .

[22]  Sattar Mansi,et al.  Modeling the Term Structure from the On-the-Run Treasury Yield Curve , 2001 .

[23]  M. M. Ali Synthesis of the beta-distribution as an aid to stochastic global optimization , 2007, Comput. Stat. Data Anal..

[24]  F. Diebold,et al.  Forecasting the Term Structure of Government Bond Yields , 2002 .

[25]  Glenn D. Rudebusch,et al.  The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach , 2004 .

[26]  D. R. Chambers,et al.  A New Approach to Estimation of the Term Structure of Interest Rates , 1984, Journal of Financial and Quantitative Analysis.

[27]  A. Siegel,et al.  Parsimonious modeling of yield curves , 1987 .