Enhanced diode characteristics of organic solar cells using titanium suboxide electron transport layer

The (dark) diode characteristics of the organic bulk heterojunction solar cell based on the phase separated blend of poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thenyl-2′,1′,3′-benzothiadiazole)] with [6,6]-phenyl C70-butyric acid methyl ester have been analyzed with a focus on the effect of the titanium suboxide (TiOx) electron transport layer. The addition of the TiOx layer into the device structure causes the saturation current density to decrease by a factor of 26 and the shunt resistance to increase by a factor of 12. The diode ideality factor and series resistance are, respectively, almost the same for diodes made with and without the TiOx layer. The results indicate that the TiOx layer increases the energy barrier for hole transport and reduces the minority carrier density.

[1]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[2]  Jean-Pierre Charles,et al.  An equivalent circuit approach to organic solar cell modelling , 2008, Microelectron. J..

[3]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[4]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[5]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[6]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[7]  Christoph J. Brabec,et al.  Physics of organic bulk heterojunction devices for photovoltaic applications , 2006 .

[8]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[9]  S. H. Park,et al.  Titanium suboxide as an optical spacer in polymer solar cells , 2009 .

[10]  Alan J. Heeger,et al.  Extended Lifetime of Organic Field‐Effect Transistors Encapsulated with Titanium Sub‐Oxide as an ‘Active’ Passivation/Barrier Layer , 2009 .

[11]  Richard C. Dorf,et al.  The Electrical Engineering Handbook , 1993 .

[12]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[13]  Christoph J. Brabec,et al.  Performance Analysis of Printed Bulk Heterojunction Solar Cells , 2006 .

[14]  Suresh Chand,et al.  A model for the J-V characteristics of P3HT:PCBM solar cells , 2009 .