A novel approach in parameter adaptation and diversity maintenance for genetic algorithms

In this paper, we propose a probabilistic rule-driven adaptive model (PRAM) for parameter adaptation and a repelling approach for diversity maintenance in genetic algorithms. PRAM uses three parameter values and a set of greedy rules to adapt the value of the control parameters automatically. The repelling algorithm is proposed to maintain the population diversity. It modifies the fitness value to increase the survival opportunity of chromosomes with rare alleles. The computation overheads of repelling are reduced by the lazy repelling algorithm, which decreases the frequency of the diversity fitness evaluations. From experiments with commonly used benchmark functions, it is found that the PRAM and repelling techniques outperform other approaches on both solution quality and efficiency.

[1]  H. Tanaka,et al.  Individual aging in genetic algorithms , 1996, 1996 Australian New Zealand Conference on Intelligent Information Systems. Proceedings. ANZIIS 96.

[2]  鈴木 昇一,et al.  DCGA:A Diversity Control Oriented Genetic Algorithm , 1997 .

[3]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[4]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[5]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[6]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[7]  R. Hinterding,et al.  Gaussian mutation and self-adaption for numeric genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[8]  Larry J. Eshelman The CHC Adaptive Search Algo-rithm , 1991 .

[9]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[10]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[11]  Zbigniew Michalewicz,et al.  Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.

[12]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[13]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[17]  Kwong-Sak Leung,et al.  A genetic algorithm based on mutation and crossover with adaptive probabilities , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[19]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[20]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[21]  Kwong-Sak Leung,et al.  DJM: a global distributed virtual machine on the Internet , 1998, Softw. Pract. Exp..

[22]  Hisashi Shimodaira,et al.  DCGA: a diversity control oriented genetic algorithm , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[23]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  A. Griewank Generalized descent for global optimization , 1981 .

[26]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  Yasuhiro Tsujimura,et al.  Entropy-based genetic algorithm for solving TSP , 1998, 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111).

[28]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[29]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[30]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .