Some new notions of convergence and stability of common fixed points in 2-metric spaces

Stability results for a pair of sequences of mappings and their common fixed points in a $2$-metric space using certain new notions of convergence are proved. The results obtained here in extend and unify several known results.

[1]  R. Pant,et al.  Sequences of ϕ-contractions and convergence of fixed points , 2013 .

[2]  R. Pant,et al.  Some new results on stability of fixed points , 2012 .

[3]  Teck-Cheong Lim,et al.  On fixed point stability for set-valued contractive mappings with applications to generalized differential equations , 1985 .

[4]  A. K. Singh,et al.  An analogue of Banach's contraction principle for 2-metric spaces , 1978, Bulletin of the Australian Mathematical Society.

[5]  G. Jungck,et al.  Commuting Mappings and Fixed Points , 1976 .

[6]  Kiyoshi Iseki,et al.  On common fixed points of mappings , 1974, Bulletin of the Australian Mathematical Society.

[7]  W. Russell,et al.  A Note on a Sequence of Contraction Mappings , 1969, Canadian Mathematical Bulletin.

[8]  Sam B. Nadler,et al.  Sequences of contractions and fixed points , 1968 .

[9]  Dhruba Das,et al.  Contraction Type Mapping on 2-Metric Spaces , 2012 .

[10]  V. Angelov A continuous dependence of fixed points of $\phi $-contractive mappings in uniform spaces , 1992 .

[11]  V. Istrăţescu Sequences of Mappings and Fixed Points , 1981 .

[12]  B. Rhoades Contraction Type Mappings on a 2‐Metric Space , 1979 .

[13]  K. Iseki Fixed Point Theorem in 2-Metric Spaces , 1975 .

[14]  Jacob Sonnenschein Opérateurs de même coefficient de contraction , 1966, Bulletin de la Classe des sciences.

[15]  S. Gähler,et al.  2-metrische Räume und ihre topologische Struktur†‡‡ , 1963 .

[16]  F. Bonsall,et al.  Lectures on some fixed point theorems of functional analysis , 1962 .