Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison

[1]  M. Jalili,et al.  Evaluating Collaborative Filtering Recommender Algorithms: A Survey , 2018, IEEE Access.

[2]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[3]  Mustansar Ali Ghazanfar,et al.  Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems , 2019, PloS one.

[4]  Hyung Jun Ahn,et al.  A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem , 2008, Inf. Sci..

[5]  Richard O. Sinnott,et al.  A Case Study in Big Data Analytics , 2016 .

[6]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[7]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[8]  Nikolaos Polatidis,et al.  A dynamic multi-level collaborative filtering method for improved recommendations , 2017, Comput. Stand. Interfaces.

[9]  Mohd Naz'ri Mahrin,et al.  Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit data , 2017, Comput. Hum. Behav..

[10]  R. Muñoz‐Carpena,et al.  Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments , 2013 .

[11]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[12]  B. O'neill Chapter 2 – Frame Fields , 2006 .

[13]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[14]  Francesco Ricci,et al.  Context-Aware Recommender Systems , 2011, AI Mag..

[15]  Bo Wang,et al.  A Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based on Social Networks , 2018, IEEE Access.

[16]  Mohamed Nazih Omri,et al.  Hybridization of an Index Based on Concept Lattice with a Terminology Extraction Model for Semantic Information Retrieval Guided by WordNet , 2016, HIS.

[17]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[18]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[19]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[20]  Diego Fernández,et al.  Comparison of collaborative filtering algorithms , 2011, ACM Trans. Web.

[21]  S. Shott,et al.  Nonparametric Statistics , 2018, The Encyclopedia of Archaeological Sciences.

[22]  Anna Szczepańska Research Design and Statistical Analysis, Third Edition by Jerome L. Myers, Arnold D. Well, Robert F. Lorch, Jr , 2011 .

[23]  Guibing Guo,et al.  Resolving data sparsity and cold start in recommender systems , 2012, UMAP.

[24]  Iván Cantador,et al.  Recommender systems for smart cities , 2020, Inf. Syst..

[25]  Javier Parapar,et al.  Collaborative filtering embeddings for memory-based recommender systems , 2019, Eng. Appl. Artif. Intell..

[26]  Mehrbakhsh Nilashi,et al.  Collaborative filtering recommender systems , 2013 .

[27]  Mohamed Nazih Omri,et al.  Estimation of a Priori Decision Threshold for Collocations Extraction: An Empirical Study , 2013, Int. J. Inf. Technol. Web Eng..

[28]  Richard E. Neapolitan,et al.  Chapter 11 – Collaborative Filtering , 2007 .

[29]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[30]  Armelle Brun,et al.  A positively directed mutual information measure for collaborative filtering , 2009 .

[31]  Mustansar Ali Ghazanfar,et al.  An Improved Product Recommendation Method for Collaborative Filtering , 2020, IEEE Access.

[32]  Mel Ó Cinnéide,et al.  A Recommender Agent for Software Libraries: An Evaluation of Memory-Based and Model-Based Collaborative Filtering , 2006, 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

[33]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[34]  Amir H. Gandomi,et al.  Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data , 2020, Expert Syst. Appl..

[35]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[36]  Yiqun Liu,et al.  How good your recommender system is? A survey on evaluations in recommendation , 2017, International Journal of Machine Learning and Cybernetics.

[37]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[38]  F. Windmeijer,et al.  An R-squared measure of goodness of fit for some common nonlinear regression models , 1997 .

[39]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[40]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[41]  James Bailey,et al.  Information theoretic measures for clusterings comparison: is a correction for chance necessary? , 2009, ICML '09.

[42]  Mohamed Nazih Omri,et al.  Information Retrieval from Unstructured Web Text Document Based on Automatic Learning of the Threshold , 2012, Int. J. Inf. Retr. Res..

[43]  Mohamed Nazih Omri,et al.  FCA_Retrieval: A Multi-operator Algorithm for Information Retrieval from Binary Concept Lattice , 2018, PACLIC.

[44]  F. O. Isinkaye,et al.  Recommendation systems: Principles, methods and evaluation , 2015 .

[45]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[46]  Mohamed Nazih Omri,et al.  Toward a new approach to author profiling based on the extraction of statistical features , 2021, Social Network Analysis and Mining.

[47]  Santanu Chaudhury,et al.  Improving Collaborative Filtering Based Recommenders Using Topic Modelling , 2014, 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[48]  J. Bobadilla,et al.  Recommender systems survey , 2013, Knowl. Based Syst..

[49]  Giovanni Semeraro,et al.  Conversational Recommender Systems and natural language: : A study through the ConveRSE framework , 2020, Decis. Support Syst..

[50]  Mohamed Nazih Omri,et al.  Hidden data states-based complex terminology extraction from textual web data model , 2020, Applied Intelligence.

[51]  Akshi Kumar,et al.  Tweet recommender model using adaptive neuro-fuzzy inference system , 2020, Future Gener. Comput. Syst..

[52]  Zhi-Heng Zhang,et al.  Integrating Triangle and Jaccard similarities for recommendation , 2017, PloS one.

[53]  J. R. Turner,et al.  Theoretical Literature Review: Tracing the Life Cycle of a Theory and Its Verified and Falsified Statements , 2018 .

[54]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[55]  Mustansar Ali Ghazanfar,et al.  Unifying user similarity and social trust to generate powerful recommendations for smart cities using collaborating filtering-based recommender systems , 2020, Soft Comput..