The GAPS programme at TNG
暂无分享,去创建一个
A. Bonomo | R. Claudi | A. Maggio | R. Cosentino | A. Ghedina | G. Piotto | A. Sozzetti | N. Buchschacher | M. Gonzalez | M. Lodi | E. Molinari | E. Poretti | K. Biazzo | D. Nardiello | M. Rainer | I. Carleo | E. Covino | G. Leto | I. Pagano | G. Scandariato | G. Frustagli | M. Pedani | M. Molinaro | A. Lanza | L. Pino | M. Brogi | G. Micela | A. M. Martinez Fiorenzano | A. Ghedina | L. Mancini | R. Gratton | F. Borsa | J. Maldonado | E. Oliva | E. Oliva
[1] M. Osorio,et al. Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO , 2020, Astronomy & Astrophysics.
[2] M. Giampapa,et al. The GAPS programme at TNG , 2020, Astronomy & Astrophysics.
[3] Antonino Francesco Lanza,et al. Neutral Iron Emission Lines from the Dayside of KELT-9b: The GAPS Program with HARPS-N at TNG XX , 2020, The Astrophysical Journal.
[4] D. Ehrenreich,et al. High-resolution transmission spectroscopy of MASCARA-2 b with EXPRES , 2020, Astronomy & Astrophysics.
[5] H. Kawahara,et al. Searching for thermal inversion agents in the transmission spectrum of KELT-20b/MASCARA-2b: detection of neutral iron and ionised calcium H&K lines , 2020, Monthly Notices of the Royal Astronomical Society.
[6] M. López‐Puertas,et al. Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross-correlation method , 2020, Astronomy & Astrophysics.
[7] J. L. Rasilla,et al. Nightside condensation of iron in an ultra-hot giant exoplanet , 2020, Nature.
[8] S. Cabot,et al. Detection of neutral atomic species in the ultra-hot Jupiter WASP-121b , 2020, Monthly Notices of the Royal Astronomical Society.
[9] D. Bayliss,et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) , 2020, Astronomy & Astrophysics.
[10] A. Bonomo,et al. The GAPS Programme with HARPS-N at TNG , 2019, Astronomy & Astrophysics.
[11] M. Osorio,et al. Atmospheric characterization of the ultra-hot Jupiter MASCARA-2b/KELT-20b , 2019, Astronomy & Astrophysics.
[12] D. Ehrenreich,et al. A spectral survey of an ultra-hot Jupiter , 2019, Astronomy & Astrophysics.
[13] T. Barman,et al. The Influence of Host Star Spectral Type on Ultra-hot Jupiter Atmospheres , 2019, The Astrophysical Journal.
[14] A. Rest,et al. Nebular Spectroscopy of Kepler’s Brightest Supernova , 2018, The Astrophysical Journal.
[15] M. Line,et al. Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-resolution Cross-correlation Spectroscopy , 2018, The Astronomical Journal.
[16] D. Ehrenreich,et al. Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b , 2018, Nature.
[17] R. Rebolo,et al. Na I and Hα absorption features in the atmosphere of MASCARA-2b/KELT-20b , 2018, Astronomy & Astrophysics.
[18] M. Deleuil,et al. From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context , 2018, Astronomy & Astrophysics.
[19] N. Cowan,et al. Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination , 2018, 1802.07725.
[20] D. Ehrenreich,et al. Combining low- to high-resolution transit spectroscopy of HD 189733b , 2017, 1709.09678.
[21] Keivan G. Stassun,et al. KELT-20b: A Giant Planet with a Period of P ∼ 3.5 days Transiting the V ∼ 7.6 Early A Star HD 185603 , 2017, 1707.01518.
[22] M. F. Andersen,et al. MASCARA-2 b: A hot Jupiter transiting a $m_V=7.6$ A-star , 2017, 1707.01500.
[23] M. R. Panzera,et al. THE SPACEINN–SISMA DATABASE: CHARACTERIZATION OF A LARGE SAMPLE OF VARIABLE AND ACTIVE STARS BY MEANS OF HARPS SPECTRA , 2016, 1611.02715.
[24] F. Pepe,et al. The Rossiter-McLaughlin effect reloaded: Probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems , 2016, 1602.00322.
[25] A. Santerne,et al. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star , 2015, 1506.02471.
[26] H. C. Stempels,et al. A major upgrade of the VALD database , 2015 .
[27] K. Heng,et al. Atmospheric Dynamics of Hot Exoplanets , 2014, 1407.4150.
[28] U. Munari,et al. The GAPS programme with HARPS-N at TNG - I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1 , 2013, 1304.0005.
[29] E. Oliva,et al. The GIANO spectrometer: towards its first light at the TNG , 2012, Other Conferences.
[30] Nicolas Buchschacher,et al. Harps-N: the new planet hunter at TNG , 2012, Other Conferences.
[31] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[32] L. Arnold,et al. Transmission spectrum of Venus as a transiting exoplanet , 2011, 1112.0572.
[33] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[34] Astrophysics,et al. FUSE spectroscopy of the sdOB primary of the post common-envelope binary LB 3459 ( AA Doradus ) , 2008, 0809.2746.
[35] D. Ehrenreich,et al. The transmission spectrum of Earth-size transiting planets , 2005, astro-ph/0510215.
[36] Yasuhiro Ohta,et al. The Rossiter-McLaughlin Effect and Analytic Radial Velocity Curves for Transiting Extrasolar Planetary Systems , 2004, astro-ph/0410499.
[37] A. Reiners,et al. On the feasibility of the detection of differential rotation in stellar absorption profiles , 2002 .
[38] Andrew Collier Cameron,et al. Spectropolarimetric observations of active stars , 1997 .
[39] D. F. Gray,et al. FOURIER ANALYSIS OF SPECTRAL LINE PROFILES: A NEW TOOL FOR AN OLD ART. , 1976 .
[40] Jean. Steinier,et al. Smoothing and differentiation of data by simplified least square procedure. , 1964, Analytical chemistry.
[41] D. B. McLaughlin. Some results of a spectrographic study of the Algol system. , 1924 .
[42] R. A. Rossiter. On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. , 1924 .
[43] Jan Swevers,et al. Ground-based and airborne instrumentation for astronomy , 2010 .