Any 7-Chromatic Graphs Has K7 Or K4,4 As A Minor
暂无分享,去创建一个
[1] Béla Bollobás,et al. Topological cliques of random graphs , 1981, J. Comb. Theory, Ser. B.
[2] Béla Bollobás,et al. Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..
[3] Stephan Brandt,et al. On the Structure of Dense Triangle-Free Graphs , 1999, Combinatorics, Probability and Computing.
[4] G. Chartrand,et al. Graphs with Forbidden Subgraphs , 1971 .
[5] Bogdan Oporowski,et al. Surfaces, Tree-Width, Clique-Minors, and Partitions , 2000, J. Comb. Theory, Ser. B.
[6] Paul A. Catlin,et al. Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.
[7] J. Thomas. The four color theorem , 1977 .
[8] G. Dirac. A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .
[9] W. T. Tutte. On the algebraic theory of graph colorings , 1966 .
[10] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[11] Wolfgang Mader,et al. Über trennende Eckenmengen in homomorphiekritischen Graphen , 1967 .
[12] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[13] Leif K. Jørgensen. Vertex Partitions of K4,4-Minor Free Graphs , 2001, Graphs Comb..
[14] Michael Stiebitz,et al. An Abstract Generalization of a Map Reduction Theorem of Birkhoff , 1995, J. Comb. Theory, Ser. B.
[15] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[16] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[17] G. Chartrand,et al. The Point‐Arboricity of Planar Graphs , 1969 .
[18] W. Mader. Über die Maximalzahl kreuzungsfreierH-Wege , 1978 .