Multiple Stable States and Catastrophic Shifts in Coastal Wetlands: Progress, Challenges, and Opportunities in Validating Theory Using Remote Sensing and Other Methods

Abstract: Multiple stable states are established in coastal tidal wetlands (marshes, mangroves, deltas, seagrasses) by ecological, hydrological, and geomorphological feedbacks. Catastrophic shifts between states can be induced by gradual environmental change or by disturbance events. These feedbacks and outcomes are key to the sustainability and resilience of vegetated coastlines, especially as modulated by human activity, sea level rise, and climate change. Whereas multiple stable state theory has been invoked to model salt marsh responses to sediment supply and sea level change, there has been comparatively little empirical verification of the theory for salt marshes or other coastal wetlands. Especially lacking is long-term evidence documenting if or how stable states are established and maintained at ecosystem scales. Laboratory and field-plot studies are informative, but of necessarily limited spatial and temporal scope. For the purposes of long-term, coastal-scale monitoring, remote sensing is the best viable option. This review summarizes the above topics and highlights the emerging promise and challenges of using remote sensing-based analyses to validate coastal

[1]  M. Robin,et al.  Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing , 2010 .

[2]  S. Silvestri,et al.  Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing , 2006 .

[3]  M. Rietkerk,et al.  A Putative Mechanism for Bog Patterning , 2004, The American Naturalist.

[4]  Cristina Da Lio,et al.  Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape , 2012 .

[5]  J. R. Jensen,et al.  Remote Sensing of Mangrove Wetlands: Relating Canopy Spectra to Site-Specific Data , 1996 .

[6]  Johan van de Koppel,et al.  Spatial Self‐Organization on Intertidal Mudflats through Biophysical Stress Divergence , 2010, The American Naturalist.

[7]  Chen Wang,et al.  Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: An empirical study on intertidal flats and marshes , 2013 .

[8]  Wojciech M. Klonowski,et al.  Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments , 2011 .

[9]  Patricia Chow-Fraser,et al.  Transferability of object-based rule sets for mapping coastal high marsh habitat among different regions in Georgian Bay, Canada , 2011, Wetlands Ecology and Management.

[10]  Johan van de Koppel,et al.  Does scale‐dependent feedback explain spatial complexity in salt‐marsh ecosystems? , 2008 .

[11]  K. Gross,et al.  Alternative states and positive feedbacks in restoration ecology. , 2004, Trends in ecology & evolution.

[12]  Akira Sase,et al.  Drag force due to vegetation in mangrove swamps , 1997 .

[13]  Donald L. DeAngelis,et al.  Analysis and Simulation of Propagule Dispersal and Salinity Intrusion from Storm Surge on the Movement of a Marsh–Mangrove Ecotone in South Florida , 2013, Estuaries and Coasts.

[14]  R. Rockwell,et al.  The detection of vegetational change by multitemporal analysis of LANDSAT data: the effects of goose foraging , 1998 .

[15]  Luca Carniello,et al.  Self-organization of shallow basins in tidal flats and salt marshes , 2006 .

[16]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[17]  Donald R. Cahoon,et al.  Surface elevation dynamics in vegetatedSpartina marshes versus unvegetated tidal ponds along the Mid-Atlantic coast, USA, with implications to waterbirds , 2006 .

[18]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[19]  C. Peterson Does a Rigorous Criterion for Environmental Identity Preclude the Existence of Multiple Stable Points? , 1984, The American Naturalist.

[20]  T. Bouma,et al.  Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study , 2008 .

[21]  Steward T. A. Pickett,et al.  Space-for-Time Substitution as an Alternative to Long-Term Studies , 1989 .

[22]  S. Phinn,et al.  Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs , 2012 .

[23]  M. Simard,et al.  A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia , 2008 .

[24]  S. Prince,et al.  Wetland change mapping for the U.S. mid-Atlantic region using an outlier detection technique , 2008 .

[25]  Joong-Sun Won,et al.  Detecting the intertidal morphologic change using satellite data , 2008 .

[26]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[27]  Luca Carniello,et al.  Sediment dynamics in shallow tidal basins: In situ observations, satellite retrievals, and numerical modeling in the Venice Lagoon , 2014 .

[28]  K. Shadan,et al.  Available online: , 2012 .

[29]  Eric C. Milbrandt,et al.  The Effects of Reduced Tidal Flushing on Mangrove Structure and Function Across a Disturbance Gradient , 2010 .

[30]  Johan van de Koppel,et al.  Potential for Sudden Shifts in Transient Systems: Distinguishing Between Local and Landscape-Scale Processes , 2008, Ecosystems.

[31]  Yong-Suhk Wui,et al.  The economic value of wetland services: a meta-analysis , 2001 .

[32]  S. Thrush,et al.  Interaction networks in coastal soft-sediments highlight the potential for change in ecological resilience. , 2012, Ecological applications : a publication of the Ecological Society of America.

[33]  R. Osman,et al.  Ecological thresholds in marine communities: theory, experiments and management , 2010 .

[34]  Hans Joosten,et al.  Self‐organization in raised bog patterning: the origin of microtope zonation and mesotope diversity , 2005 .

[35]  Richard Brinkman,et al.  Wave attenuation in mangrove forests: an investigation through field and theoretical studies , 2006 .

[36]  Patrick Meire,et al.  Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape , 2011 .

[37]  Maggi Kelly,et al.  Multi-scale functional mapping of tidal marsh vegetation using object-based image analysis , 2008 .

[38]  Aart Kroon,et al.  Wave attenuation in coastal mangroves in the Red River Delta, Vietnam , 2007 .

[39]  S. Phinn,et al.  An integrated field and remote sensing approach for mapping Seagrass Cover, Moreton Bay, Australia , 2009 .

[40]  C. S. Holling,et al.  Regime Shifts, Resilience, and Biodiversity in Ecosystem Management , 2004 .

[41]  Uta Berger,et al.  Testing the intermediate disturbance hypothesis in species-poor systems: A simulation experiment for mangrove forests , 2008 .

[42]  T. Minello,et al.  NEKTON IN GULF COAST WETLANDS: FINE-SCALE DISTRIBUTIONS, LANDSCAPE PATTERNS, AND RESTORATION IMPLICATIONS , 2002 .

[43]  Luca Carniello,et al.  Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats , 2007 .

[44]  Susan L. Ustin,et al.  Classification of contamination in salt marsh plants using hyperspectral reflectance , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Dirk Lauwaet,et al.  Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height , 2005 .

[46]  Peter M. J. Herman,et al.  Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica , 2009 .

[47]  Patricia L. Wiberg,et al.  Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse , 2012 .

[48]  M. Rietkerk,et al.  Spatial Interactions and Resilience in Arid Ecosystems , 2004, The American Naturalist.

[49]  R. Kneib,et al.  Nekton use of vegetated marsh habitats at different stages of tidal inundation , 1994 .

[50]  F. Malamud-Roam,et al.  Late Holocene δ13C and pollen records of paleosalinity from tidal marshes in the San Francisco Bay estuary, California☆ , 2004, Quaternary Research.

[51]  Muneer Ahmed,et al.  Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh. , 2007, Journal of environmental quality.

[52]  A. C. Ellis,et al.  Remote sensing techniques for mangrove mapping , 1998 .

[53]  Yara Schaeffer-Novelli,et al.  Secondary succession impairment in restored mangroves , 2012, Wetlands Ecology and Management.

[54]  Robert Costanza,et al.  The Value of Coastal Wetlands for Hurricane Protection , 2008, Ambio.

[55]  Nicholas M. Enwright,et al.  Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States , 2013, Global change biology.

[56]  Patricia L. Wiberg,et al.  Stability and resilience of seagrass meadows to seasonal and interannual dynamics and environmental stress , 2012 .

[57]  Johan van de Koppel,et al.  Self‐Organization and Vegetation Collapse in Salt Marsh Ecosystems , 2004, The American Naturalist.

[58]  Stijn Temmerman,et al.  Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh , 2005 .

[59]  O. A. L. Paramor,et al.  On the loss of saltmarshes in south-east England and methods for their restoration , 2004 .

[60]  Chris Roelfsema,et al.  Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps , 2010 .

[61]  V. Klemas,et al.  In situ spectral reflectance studies of tidal wetland grasses , 1981 .

[62]  Kevan B. Moffett,et al.  Groundwater dynamics and surface water–groundwater interactions in a prograding delta island, Louisiana, USA , 2015 .

[63]  Y. Jun Xu,et al.  Recent decadal growth of the Atchafalaya River Delta complex: Effects of variable riverine sediment input and vegetation succession , 2013 .

[64]  Bruce W. Pengra,et al.  Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000 , 2007 .

[65]  M. Rietkerk,et al.  The Dynamic Regime Concept for Ecosystem Management and Restoration , 2004 .

[66]  Filipe Aires,et al.  Remote sensing of global wetland dynamics with multiple satellite data sets , 2001 .

[67]  T. Simas,et al.  Effects of global climate change on coastal salt marshes , 2001 .

[68]  T. Balke,et al.  Establishment of biogeomorphic ecosystems : a study on mangrove and salt marsh pioneer vegetation , 2013 .

[69]  Sarah L. Dance,et al.  Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007. , 2010 .

[70]  Tsai-Ming Lee,et al.  Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities, Taiwan. , 2009 .

[71]  S. Temmerman,et al.  Limits on the adaptability of coastal marshes to rising sea level , 2010 .

[72]  Alessandro Marani,et al.  Salt marsh vegetation radiometry: Data analysis and scaling , 2002 .

[73]  Victor H. Rivera-Monroy,et al.  Adapting an Ecological Mangrove Model to Simulate Trajectories in Restoration Ecology , 1999 .

[74]  Robert E. Kopp,et al.  Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast , 2014 .

[75]  Ariel E. Lugo,et al.  Mangrove Ecosystems: Successional or Steady State? , 1980 .

[76]  B. S. McCartney,et al.  Construction of an inter-tidal digital elevation model by the 'water-line' method , 1995 .

[77]  M. Kelly,et al.  Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time , 2011 .

[78]  Nicolas Barbier,et al.  Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. , 2008, Ecology.

[79]  Brittany Claire Smith,et al.  The effects of vegetation on island geomorphology in the Wax Lake Delta, Louisiana , 2014 .

[80]  P. V. Sundareshwar,et al.  RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL , 2002 .

[81]  Peter G. Fairweather,et al.  Predicting future ecological degradation based on modelled thresholds , 2010 .

[82]  Stijn Temmerman,et al.  Effects of shoot stiffness, shoot size and current velocity on scouring sediment from around seedlings and propagules , 2009 .

[83]  Patricia L. Wiberg,et al.  Marsh Collapse Does Not Require Sea Level Rise , 2013 .

[84]  Andrew C. Parnell,et al.  Quantifying the Contribution of Sediment Compaction to late Holocene Salt-Marsh Sea-Level Reconstructions, North Carolina, USA , 2015, Quaternary Research.

[85]  D. Wardle,et al.  The use of chronosequences in studies of ecological succession and soil development , 2010 .

[86]  Donald R. Cahoon,et al.  Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch , 2003 .

[87]  N. Knowlton Thresholds and Multiple Stable States in Coral Reef Community Dynamics , 1992 .

[88]  Johan van de Koppel,et al.  Enhanced nitrogen loss may explain alternative stable states in dune slack succession , 2005 .

[89]  Daniel M. Alongi,et al.  The Impact of Climate Change on Mangrove Forests , 2015, Current Climate Change Reports.

[90]  Romaric Verney,et al.  The Stability of Vegetated Tidal Flats in a Coastal Lagoon Through Quasi In-Situ Measurements of Sediment Erodibility , 2011 .

[91]  J. Populus,et al.  Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam , 2007 .

[92]  Andrew M. Folkard,et al.  Hydrodynamics of model Posidonia oceanica patches in shallow water , 2005 .

[93]  V. Semeniuk,et al.  The response of basin wetlands to climate changes: a review of case studies from the Swan Coastal Plain, south-western Australia , 2012, Hydrobiologia.

[94]  Stuart R. Phinn,et al.  Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef , 2015 .

[95]  Joo-Hyung Ryu,et al.  Observation of typhoon-induced seagrass die-off using remote sensing , 2015 .

[96]  Pierre Couteron,et al.  Periodic spotted patterns in semi‐arid vegetation explained by a propagation‐inhibition model , 2001 .

[97]  Jay Gao,et al.  Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand , 2013 .

[98]  J. Bruno,et al.  Phase shifts and stable states on coral reefs , 2010 .

[99]  Peter M. J. Herman,et al.  Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, the Netherlands) , 2008 .

[100]  C. Folke,et al.  Alternative states on coral reefs: beyond coral–macroalgal phase shifts , 2009 .

[101]  E. Meron,et al.  Diversity of vegetation patterns and desertification. , 2001, Physical review letters.

[102]  F. Blasco,et al.  Depletion of the mangroves of Continental Asia , 2001, Wetlands Ecology and Management.

[103]  D. Civco,et al.  Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh , 2008 .

[104]  P. Gong,et al.  Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery , 2006 .

[105]  V. Klemas,et al.  Remote sensing of emergent and submerged wetlands: an overview , 2013 .

[106]  Michael J. Osland,et al.  Aboveground Allometric Models for Freeze-Affected Black Mangroves (Avicennia germinans): Equations for a Climate Sensitive Mangrove-Marsh Ecotone , 2014, PloS one.

[107]  Daozhou Gao,et al.  Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient. , 2012, Theoretical population biology.

[108]  Marco Marani,et al.  Vegetation engineers marsh morphology through multiple competing stable states , 2013, Proceedings of the National Academy of Sciences.

[109]  Giulio Mariotti,et al.  A numerical model for the coupled long‐term evolution of salt marshes and tidal flats , 2010 .

[110]  Manuel González-Rivero,et al.  The role of sponge competition on coral reef alternative steady states , 2011 .

[111]  P. Passalacqua,et al.  Identifying environmental controls on the shoreline of a natural river delta , 2015 .

[112]  Ehud Meron,et al.  Vegetation patterns along a rainfall gradient , 2004 .

[113]  Nicolas Barbier,et al.  Deeply gapped vegetation patterns: on crown/root allometry, criticality and desertification. , 2009, Journal of theoretical biology.

[114]  V. Klemas,et al.  Quantitative assessment of tidal wetlands using remote sensing , 1980 .

[115]  Johan van de Koppel,et al.  Regular pattern formation in real ecosystems. , 2008, Trends in ecology & evolution.

[116]  William H. Conner,et al.  Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise , 2010 .

[117]  Bruce B. Peckham,et al.  Plant Community Dynamics, Nutrient Cycling, and Alternative Stable Equilibria in Peatlands , 2002, The American Naturalist.

[118]  Philip B. Williams,et al.  Salt Marsh Restoration Experience in San Francisco Bay , 2001 .

[119]  M. Bock,et al.  Mapping Land-Cover and Mangrove Structures with Remote Sensing Techniques: A Contribution to a Synoptic GIS in Support of Coastal Management in North Brazil , 2004, Environmental management.

[120]  Kent W. Hilbert Land Cover Change within the Grand Bay National Estuarine Research Reserve: 1974–2001 , 2006 .

[121]  R. Harmsen,et al.  Patterns of vegetation change and the recovery potential of degraded areas in a coastal marsh system of the Hudson Bay lowlands , 2002 .

[122]  Robert R. Christian,et al.  Consequences of Climate Change on the Ecogeomorphology of Coastal Wetlands , 2008 .

[123]  Cheng Wang,et al.  Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[124]  S. Temmerman,et al.  Vegetation causes channel erosion in a tidal landscape , 2007 .

[125]  Michael L. Pace,et al.  Nonlinear Dynamics and Alternative Stable States in Shallow Coastal Systems , 2013, Oceanography.

[126]  N. Loneragan,et al.  Mapping and characterising subtropical estuarine landscapes using aerial photography and GIS for potential application in wildlife conservation and management , 2005 .

[127]  M. C. Ball,et al.  Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia , 1995 .

[128]  Thomas S. Bianchi,et al.  The changing carbon cycle of the coastal ocean , 2013, Nature.

[129]  P. Petraitis,et al.  Multiple stable states and relationship between thresholds in processes and states , 2010 .

[130]  S. Steinberg,et al.  Mapping salt marsh vegetation using aerial hyperspectral imagery and linear unmixing in Humboldt Bay, California , 2007, Wetlands.

[131]  K. Moffett,et al.  Distinguishing wetland vegetation and channel features with object-based image segmentation , 2013 .

[132]  Jan P. Bakker,et al.  Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies , 2013, Journal of Coastal Conservation.

[133]  J. M. Zaldívar,et al.  Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview , 2008 .

[134]  Le Wang,et al.  Photogrammetric Engineering & Remote Sensing Neural Network Classification of Mangrove Species from Multi-seasonal Ikonos Imagery , 2022 .

[135]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[136]  Andrea Rinaldo,et al.  The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics , 2009 .

[137]  M. B. Machmuller,et al.  Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services , 2009 .

[138]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[139]  John R. Jensen,et al.  Integrating LIDAR elevation data, multi‐spectral imagery and neural network modelling for marsh characterization , 2005 .

[140]  A. Brad Murray,et al.  Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change , 2008 .

[141]  A. Salomon,et al.  Recruitment facilitation can drive alternative states on temperate reefs. , 2010, Ecology.

[142]  Chaoyu Yang,et al.  Detection of Seagrass Distribution Changes from 1991 to 2006 in Xincun Bay, Hainan, with Satellite Remote Sensing , 2009, Sensors.

[143]  Kitack Lee,et al.  Evaluation of carbon flux in vegetative bay based on ecosystem production and CO 2 exchange driven by coastal autotrophs , 2015 .

[144]  Alejandra C. Ortiz,et al.  Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition , 2013 .

[145]  R. May Thresholds and breakpoints in ecosystems with a multiplicity of stable states , 1977, Nature.

[146]  Yan Zhou,et al.  Spatial and Seasonal CH4 Flux in the Littoral Zone of Miyun Reservoir near Beijing: The Effects of Water Level and Its Fluctuation , 2014, PloS one.

[147]  E. Barbier,et al.  The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm , 2011 .

[148]  S. Ustin,et al.  The role of environmental context in mapping invasive plants with hyperspectral image data , 2008 .

[149]  F. Blasco,et al.  Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming , 2004 .

[150]  D. Allen,et al.  Tidal migrations of nekton in salt marsh intertidal creeks , 2006 .

[151]  R M May,et al.  Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.

[152]  Philip B. Williams,et al.  Physical Evolution of Restored Breached Levee Salt Marshes in the San Francisco Bay Estuary , 2002 .

[153]  V. Klemas Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview , 2010 .

[154]  Steffen Gebhardt,et al.  Remote Sensing of Mangrove Ecosystems: A Review , 2011, Remote. Sens..

[155]  H. Nepf Flow and Transport in Regions with Aquatic Vegetation , 2012 .

[156]  Tom Spencer,et al.  Assessing seasonal vegetation change in coastal wetlands with airborne remote sensing: an outline methodology , 1998 .

[157]  Karl Korfmacher,et al.  Remote sensing and GIS analysis of seagrass meadows in North Carolina, USA , 1997 .

[158]  R. Lefever,et al.  On the origin of tiger bush , 1997 .

[159]  Scott R. Marion,et al.  Recovery trajectories during state change from bare sediment to eelgrass dominance , 2012 .

[160]  Luca Carniello,et al.  Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[161]  P. Mumby,et al.  Measurement of seagrass standing crop using satellite and digital airborne remote sensing , 1997 .

[162]  David C. Douglas,et al.  Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska , 1997 .

[163]  J. Fuentes,et al.  Vegetation–microclimate feedbacks in woodland–grassland ecotones , 2013 .

[164]  Peng Gong,et al.  Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery , 2004 .

[165]  Harry H. Roberts,et al.  Accretion and Vegetation Community Change in the Wax Lake Delta Following the Historic 2011 Mississippi River Flood , 2015 .

[166]  S. Temmerman,et al.  Ecosystem-based coastal defence in the face of global change , 2013, Nature.

[167]  R. Lathrop,et al.  A Multi-scale Segmentation Approach to Mapping Seagrass Habitats Using Airborne Digital Camera Imagery , 2006 .

[168]  D. Donato,et al.  Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems , 2012, PloS one.

[169]  Qin Du,et al.  Root Effect of Three Vegetation Types on Shoreline Stabilization of Chongming Island, Shanghai , 2010 .

[170]  Christophe Delacourt,et al.  Holocene salt‐marsh sedimentary infilling and relative sea‐level changes in West Brittany (France) using foraminifera‐based transfer functions , 2015 .

[171]  M. Kirwan,et al.  A coupled geomorphic and ecological model of tidal marsh evolution , 2007, Proceedings of the National Academy of Sciences.

[172]  Susan L. Ustin,et al.  MONITORING PACIFIC COAST SALT MARSHES USING REMOTE SENSING , 1997 .

[173]  Marten Scheffer,et al.  Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. , 2010, Ecology.

[174]  Luca Ridolfi,et al.  Mathematical models of vegetation pattern formation in ecohydrology , 2009 .

[175]  P. Gong,et al.  Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama , 2004 .

[176]  Nicolas Barbier,et al.  The global biogeography of semi‐arid periodic vegetation patterns , 2008 .

[177]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[178]  A. D. Roos,et al.  Direct experimental evidence for alternative stable states: a review , 2005 .

[179]  Susan L. Ustin,et al.  Remote sensing of wetland conditions in West Coast salt marshes , 2004, SPIE Optics + Photonics.

[180]  Luca Carniello,et al.  Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future , 2009 .

[181]  Vytautas Klemas,et al.  Tidal wetlands natural and human-made changes from 1973 to 1979 in Delaware: Mapping techniques and results , 1983 .

[182]  Peter M. J. Herman,et al.  Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments , 2007 .

[183]  Jan E. Vermaat,et al.  The effect of increasing sediment accretion on the seedlings of three common Thai mangrove species , 2002 .

[184]  Nadav M. Shnerb,et al.  Dynamical failure of Turing patterns , 2005, nlin/0508014.

[185]  A. Hastings,et al.  Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data , 2005 .

[186]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[187]  F. Aires,et al.  Global inundation dynamics inferred from multiple satellite observations, 1993–2000 , 2007 .

[188]  John M. Melack,et al.  Characterizing patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations , 2007 .

[189]  Chris Roelfsema,et al.  Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia , 2011 .

[190]  S. Solomon,et al.  Reactive glass and vegetation patterns. , 2002, Physical review letters.

[191]  Pieter Moonen,et al.  Impact of vegetation die‐off on spatial flow patterns over a tidal marsh , 2012 .

[192]  Norman C. Duke,et al.  A systematic revision of the Mangrove genus Sonneratia (Sonneratiaceae) in Australasia , 1987 .

[193]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[194]  Mark D. Bertness,et al.  Latent impacts: the role of historical human activity in coastal habitat loss , 2013 .

[195]  R. Aronson,et al.  PHASE SHIFTS, ALTERNATIVE STATES, AND THE UNPRECEDENTED CONVERGENCE OF TWO REEF SYSTEMS , 2004 .

[196]  Lin Yuan,et al.  Analyzing the habitat suitability for migratory birds at the Chongming Dongtan Nature Reserve in Shanghai, China , 2008 .

[197]  M. Kirwan,et al.  Tidal wetland stability in the face of human impacts and sea-level rise , 2013, Nature.

[198]  Andrea Rinaldo,et al.  Biologically‐controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon , 2007 .

[199]  Maarten B. Eppinga,et al.  Regular Surface Patterning of Peatlands: Confronting Theory with Field Data , 2008, Ecosystems.

[200]  Amos Maritan,et al.  Non-Neutral Vegetation Dynamics , 2006, PloS one.

[201]  D. A. White,et al.  Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta , 2011 .

[202]  A. Brad Murray,et al.  Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates , 2011 .

[203]  Uta Berger,et al.  Comparing the influence of large- and small-scale disturbances on forest heterogeneity: A simulation study for mangroves , 2014 .

[204]  Patricia L. Wiberg,et al.  Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation , 2010 .

[205]  Peter M. J. Herman,et al.  Critical transitions in disturbance‐driven ecosystems: identifying Windows of Opportunity for recovery , 2014 .

[206]  John Couwenberg,et al.  A simulation model of mire patterning – revisited , 2005 .

[207]  V. Klemas,et al.  Airborne Remote Sensing of Coastal Features and Processes: An Overview , 2013 .

[208]  Margaret A. Palmer,et al.  Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science , 2009 .

[209]  Hanna J. Poffenbarger,et al.  Salinity Influence on Methane Emissions from Tidal Marshes , 2011, Wetlands.

[210]  R. Jefferies,et al.  A biotic agent promotes large‐scale catastrophic change in the coastal marshes of Hudson Bay , 2006 .

[211]  Hans-Peter Blume,et al.  A field experiment on the influence of the postulated global climatic change on coastal marshland soils , 2007 .

[212]  I. Rutherfurd,et al.  The role of riparian trees in maintaining riverbank stability: A review of Australian experience and practice , 2010 .

[213]  Neil Saintilan,et al.  How mangrove forests adjust to rising sea level. , 2014, The New phytologist.

[214]  Quan Hua,et al.  Mangrove Forest and Soil Development on a Rapidly Accreting Shore in New Zealand , 2010, Ecosystems.

[215]  B. Lundén,et al.  Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing , 2006 .

[216]  P. Maini,et al.  Spatial pattern formation in chemical and biological systems , 1997 .

[217]  M. Rietkerk,et al.  Self-Organized Patchiness and Catastrophic Shifts in Ecosystems , 2004, Science.

[218]  Lei Wang,et al.  Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery , 2014 .

[219]  H. Nepf Hydrodynamics of vegetated channels , 2012 .

[220]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[221]  Martin Gullström,et al.  Satellite remote sensing for monitoring of vanishing seagrass in Swedish coastal waters , 2003 .

[222]  Mark E. Conrad,et al.  Carbon-Isotope, Diatom, and Pollen Evidence for Late Holocene Salinity Change in a Brackish Marsh in the San Francisco Estuary , 2001, Quaternary Research.

[223]  Liquan Zhang,et al.  Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai, China , 2006 .

[224]  S. Massel,et al.  Energy dissipation in non-uniform mangrove forests of arbitrary depth , 2008 .

[225]  Yohei Sato,et al.  Evaluation of multispatial scale measurements for monitoring wetland vegetation, Kushiro wetland, Japan: application of SPOT images, CASI data, airborne CNIR video images and balloon aerial photography , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[226]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[227]  Elizabeth Follett,et al.  Sediment patterns near a model patch of reedy emergent vegetation , 2012 .

[228]  L. Richards,et al.  National Wetlands Inventory , 2012 .

[229]  R. Tol,et al.  The double trade-off between adaptation and mitigation for sea level rise: an application of FUND , 2007 .

[230]  D. Alongi Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change , 2008 .

[231]  Francisco J. Artigas,et al.  Spectral discrimination of marsh vegetation types in the New Jersey Meadowlands, USA , 2006, Wetlands.

[232]  R. May,et al.  Bifurcations and Dynamic Complexity in Simple Ecological Models , 1976, The American Naturalist.

[233]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[234]  Nitin K. Tripathi,et al.  Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data , 2005 .

[235]  Andrea Rinaldo,et al.  A geomorphic study of lagoonal landforms , 2005 .

[236]  M. Rietkerk,et al.  Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems , 2008, Science.

[237]  David P. Callaghan,et al.  Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: A flume study on three intertidal plant species , 2013 .

[238]  William Nardin,et al.  Optimum vegetation height and density for inorganic sedimentation in deltaic marshes , 2014 .

[239]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[240]  Chen Wang,et al.  Biogeomorphic feedback between plant growth and flooding causes alternative stable states in an experimental floodplain , 2016 .

[241]  Greg Hancock,et al.  Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions , 2006 .

[242]  Maarten B. Eppinga,et al.  Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning , 2009, The American Naturalist.

[243]  Chris Roelfsema,et al.  Mapping seagrass species, cover and biomass in shallow waters : An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia) , 2008 .

[244]  Joanna C. Ellison,et al.  Impacts of Sediment Burial on Mangroves , 1999 .

[245]  John M. Melack,et al.  Remote sensing of aquatic vegetation: theory and applications , 2008, Environmental monitoring and assessment.

[246]  Andrea Rinaldo,et al.  Hydroperiod regime controls the organization of plant species in wetlands , 2012, Proceedings of the National Academy of Sciences.

[247]  Inigo J. Losada,et al.  The role of coastal plant communities for climate change mitigation and adaptation , 2013 .

[248]  Matthias Kudella,et al.  Wave attenuation over coastal salt marshes under storm surge conditions , 2014 .

[249]  Stephen R. Carpenter,et al.  Evidence of alternate attractors from a whole-ecosystem regime shift experiment , 2013, Theoretical Ecology.

[250]  S. Silvestri,et al.  Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography , 2003 .

[251]  D. Bolshiyanov,et al.  Lena River delta formation during the Holocene , 2014 .

[252]  Jonathan A. Sherratt,et al.  An Analysis of Vegetation Stripe Formation in Semi-Arid Landscapes , 2005, Journal of mathematical biology.

[253]  Fares M. Howari,et al.  Field and Remote-Sensing Assessment of Mangrove Forests and Seagrass Beds in the Northwestern Part of the United Arab Emirates , 2009 .

[254]  Stuart R. Phinn,et al.  Integrating Quickbird Multi-Spectral Satellite and Field Data: Mapping Bathymetry, Seagrass Cover, Seagrass Species and Change in Moreton Bay, Australia in 2004 and 2007 , 2011, Remote. Sens..

[255]  P. Kotanen,et al.  Decadal changes in vegetation of a subarctic salt marsh used by lesser snow and Canada geese , 2013, Plant Ecology.

[256]  T. Warner,et al.  Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects , 2011 .

[257]  S. Ustin,et al.  Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA , 2005 .

[258]  M. Scheffer,et al.  Alternative equilibria in shallow lakes. , 1993, Trends in ecology & evolution.

[259]  C. Woodcock,et al.  Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam , 2016 .

[260]  Chris Roelfsema,et al.  Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing , 2013 .

[261]  M. Scheffer,et al.  Slowing Down in Spatially Patterned Ecosystems at the Brink of Collapse , 2011, The American Naturalist.

[262]  F. Dahdouh-Guebas,et al.  Remote sensing and zonation of seagrasses and algae along the Kenyan coast , 1999, Hydrobiologia.

[263]  Donald R. Cahoon,et al.  Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls , 2006 .